# AGN SED & BH-galaxy Co-evolution

Astrophysics X-ray Lab course 2021/2022

### **SED: Spectral Energy Distribution**

- Overall shape of the AGN emission
- ~ low resolution spectrum
- $F_{\nu} \rightarrow$  (erg/s/cm<sup>2</sup>/Hz), (Jy)
- $\nu F_{\nu} \rightarrow (erg/s/cm^2)$ , (Jy·Hz)
- $F_{\lambda} \rightarrow (erg/s/cm^2/um)$

•  $\lambda F_{\lambda} \rightarrow (erg/s/cm^2)$ 

1 Jy = 10<sup>-23</sup> erg/s/cm<sup>2</sup>/Hz 1 Hz = 4.1357 ·10<sup>-18</sup> keV



Units conversion tool: https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/energyconv/energyConv.pl

### Usuful conversion tables

**Units conversion tool**: https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/energyconv/energyConv.pl

| TO →<br>FROM↓         | λ(Å)                        | $\lambda(\mu m)$            | $\lambda(cm)$               | $\nu(\text{Hz})$                | E(keV)                          | WN(cm <sup>-1</sup> )      | E(erg)                           |
|-----------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------|---------------------------------|----------------------------|----------------------------------|
| λ(Å)                  | 1                           | $10^{-4}\lambda$            | $10^{-8}\lambda$            | $3.00 \times 10^{18} / \lambda$ | 12.4/λ                          | $10^8/\lambda$             | $1.99 \times 10^{-8} / \lambda$  |
| $\lambda(\mu m)$      | 10 <sup>4</sup> λ           | 1                           | 10 <sup>-4</sup> λ          | $3.00 \times 10^{14} / \lambda$ | $1.24 \times 10^{-3}/\lambda$   | $10^4/\lambda$             | $1.99 \times 10^{-12} / \lambda$ |
| $\lambda(cm)$         | 10 <sup>8</sup> λ           | 10 <sup>4</sup> λ           | 1                           | $3.00 \times 10^{10} / \lambda$ | $1.24 \times 10^{-7} / \lambda$ | 1/λ                        | $1.99 \times 10^{-16} / \lambda$ |
| ν(Hz)                 | $3.00 \times 10^{18} / \nu$ | $3.00 \times 10^{14} / \nu$ | $3.00 \times 10^{10} / \nu$ | 1                               | $4.14 \times 10^{-18} \nu$      | $3.34 \times 10^{-11} \nu$ | $6.63 \times 10^{-27} \nu$       |
| E(keV)                | 12.4/E                      | 1.24×10 <sup>-3</sup> /E    | 1.24×10 <sup>-7</sup> /E    | 2.42×10 <sup>17</sup> E         | 1                               | 8.07×10 <sup>6</sup> E     | 1.60×10 <sup>-9</sup> E          |
| WN(cm <sup>-1</sup> ) | 10 <sup>8</sup> /WN         | 104/WN                      | 1/WN                        | 3.00×10 <sup>10</sup> WN        | 1.24×10-7WN                     | 1                          | 1.99×10 <sup>-16</sup> WN        |
| E(erg)                | 1.99×10 <sup>-8</sup> /E    | 1.99×10 <sup>-12</sup> /E   | 1.99×10 <sup>-16</sup> /E   | 1.51×10 <sup>26</sup> E         | 6.24×10 <sup>8</sup> E          | 5.03×10 <sup>15</sup> E    | 1                                |

### **Energy Unit Conversion**

### Usuful conversion tables

| $TO \rightarrow FROM \downarrow$                                                              | $S_{ u}(\mathrm{Jy})$                 | $f_E \left( \frac{\text{photons}}{\text{cm}^2  \text{s keV}} \right)$ | $f_{\lambda} \left( \frac{\mathrm{photons}}{\mathrm{cm}^2  \mathrm{s}  \mathrm{\AA}} \right)$ | $F_{\lambda} \left( \frac{\mathrm{ergs}}{\mathrm{cm}^2  \mathrm{s}  \mathrm{\AA}} \right)$ | $F_{\nu} \left( \frac{\mathrm{ergs}}{\mathrm{cm}^2  \mathrm{s}  \mathrm{Hz}} \right)$ |
|-----------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $S_{\nu}(Jy)$                                                                                 | $S_{ u}(\mathrm{Jy})$                 | $1.51\times 10^3 S_\nu/E$                                             | $1.51\times 10^3 S_\nu/\lambda$                                                               | $3.00\times 10^{-5}S_{\nu}/\lambda^2$                                                      | $10^{-23}S_{ u}$                                                                      |
| $f_E \left( \frac{\text{photons}}{\text{cm}^2  \text{s keV}} \right)$                         | $6.63\times 10^{-4} E f_E$            | $f_E$                                                                 | $8.07\times 10^{-2}E^2f_E$                                                                    | $1.29 \times 10^{-10} E^3 f_E$                                                             | $6.63\times 10^{-27} Ef_E$                                                            |
| $f_{\lambda} \left( \frac{\mathrm{photons}}{\mathrm{cm}^2  \mathrm{s}  \mathrm{\AA}} \right)$ | $6.63\times 10^{-4}\lambda f_\lambda$ | $8.07\times 10^{-2}\lambda^2 f_\lambda$                               | $f_{\lambda}$                                                                                 | $1.99\times 10^{-8} f_\lambda/\lambda$                                                     | $6.63\times 10^{-27}\lambda f_\lambda$                                                |
| $F_{\lambda} \left( \frac{\mathrm{ergs}}{\mathrm{cm}^2  \mathrm{s}  \mathrm{\AA}} \right)$    | $3.34\times 10^4\lambda^2 F_\lambda$  | $4.06\times 10^6\lambda^3 F_\lambda$                                  | $5.03\times 10^7 \lambda F_\lambda$                                                           | $F_{\lambda}$                                                                              | $3.34\times 10^{-19}\lambda^2 F_\lambda$                                              |
| $F_{\nu} \left( \frac{\mathrm{ergs}}{\mathrm{cm}^2  \mathrm{s}  \mathrm{Hz}} \right)$         | $10^{23}F_{\nu}$                      | $1.51\times 10^{26}F_{\nu}/E$                                         | $1.51\times 10^{26}F_{\nu}/\lambda$                                                           | $3.00\times 10^{18}F_{\nu}/\lambda^2$                                                      | $F_{ u}$                                                                              |

Flux Density Conversion (E in keV;  $\lambda$  in Å)



### **AGN** structure

#### **RADIO from jet**



**UV-to-IR broad & narrow lines** 

#### Astrophysics Lab 2021/2022

Accretion disk





**Big Blue Bump** 

thin and optically thick)

• T<sub>BB</sub>= 2 ⋅10<sup>5</sup> K

peaks UV •

AGN SED

6

- Accretion disk
- Dusty torus

AGN SED

dust absorbs UV & optical radiations

- re-emits in mid-IR wavelengths
- peaks at  $\lambda = 20 50 \ \mu m$
- Simplest model: multiple temperature black body



### Torus & 10µm silicate feature

- **9.7µm** ( $\approx$ 10µm) **silicate** (Si-O) feature is easily recognizable in torus SED
- In emission for type 1 AGN
- In **absorption** for **type 2** AGN with enough N<sub>H</sub>
- Its absorption depth correlates (more or less) with the AGN obscuration (Georgantopoulos+12, Xu+20)
- Does the dust in the host-galaxy contribute to the 10µm absorption? (Goulding+12)



- Accretion disk
- Dusty torus
- Hot corona
- Reflection component
- Soft excess
- Hot corona ↔ Power law
- Trace innermost region
- Hot corona + Reflection + Soft excess = Third bump of the SED





- Accretion disk
- Dusty torus
- Hot corona
- Reflection component
- Soft excess
- Radiojet





- Accretion disk •
- Dusty torus •
- Hot corona •
- **Reflection component** ٠
- Soft excess •

Radiojet



## Type 1 vs Type 2 AGN SED

 $f_{AGN} = AGN fraction = L_{IR,AGN} / L_{IR,gal}$ 

- In the IR-UV range low luminosity AGN are completely dominated by the emission of their host-galaxy
- In the X-ray band AGN dominates:
  - Soft-X may suffer from obscuration
  - In hard-X no obscuration
- $N_{H} =$  Hydrogen equivalent column density [cm<sup>-2</sup>]
- $N_{\rm H} < 10^{22} \, {\rm cm}^{-2}$  : unobscured AGN (type 1)
- $N_{H} > 10^{22} \text{ cm}^{-2}$  : obscured AGN (type 2)
- $N_{H} > 10^{24} \text{ cm}^{-2}$  : Compton Thick AGN (CT)

Composite AGN and galaxy SEDs and images for varying AGN dominance and obscuration

Hickox & Alexander (2018) "Obscured Active Galactic Nuclei" ARA&A, Volume 56



## Type 1 vs Type 2 AGN SED

• Type 1 AGN: 3 component SED

• Type 2 AGN:

- lacks Big Blue Bump
- only Narrow lines in optical-UV
- IR torus emission unaffected
- Hard X-ray emission unaffected
- Soft-X more and more absorbed as N<sub>H</sub> grows
  - $\rightarrow$  N<sub>H</sub> / HR=F<sub>Hard</sub>/F<sub>soft</sub> /
- Most obscured AGN impossible to detect in optical, difficult in Soft-X



#### Torus models Smooth torus

Fritz et al. 2006



- Continuous distribution of dust
- Source obscured if *los* intercepts the torus → obscuration is linked to torus geometry
- Dust temperature is a function of the distance from the nucleus

#### **Clumpy torus**



- The **probability of direct viewing** the AGN decreases away from the axis, but it is **always finite**
- Different dust temperatures co-exist at the same distance from the nucleus, and the same temperature can occur at different distances
- With time, cloud movements can change the source obscuration

### More torus models...

#### Hydromagnetic disk wind

Emmering+92, Elitzur+08

- Outflow of clouds embedded in a hydromagnetic disk wind
- The torus is merely a region in the wind which happens to provide the required toroidal obscuration because the clouds there are dusty and optically thick
- The torus clouds are just a continuation of the BLR clouds. No discontinuity between BLR and torus
- $R_{D}$  = sublimation radius (no dust for  $r < R_{D}$ )
  - $r < R_D$ : dustless clouds  $\rightarrow$  Broad line emission
  - r > R<sub>D</sub>: dust in the clouds shields from ionizing radiations (no line emission), molecule and dust absorb UV/optical and re-emit in the mid-IR

### **AGN-galaxy co-evolution**

"The evolution of the universe can be likened to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a well-chilled cinder, we see the fading of the suns and try to recall the vanished brilliance of the origin of the worlds."

Lemaître (1931)

### SFR density

 SFR as function of redshift peaks at z ~ 2, the so called 'COSMIC NOON' (Madau98, Merloni & Heinz 08,...)





### BH accretion rate density

- SFR as function of redshift peaks at z ~ 2, the so called 'COSMIC NOON' (Madau98, Merloni & Heinz 08,...)
- **BH accretion rate density** (BHARD,BHAD) has a very **similar trend**
- Most of the BH growth at 1<z<3





### BH accretion rate density

- SFR as function of redshift peaks at z ~ 2, the so called 'COSMIC NOON' (Madau98, Merloni & Heinz 08,...)
- **BH accretion rate density** (BHARD,BHAD) has a very **similar trend**
- Most of the BH growth at 1<z<3
- BHAD from X-ray misses very obscured AGN
- BHAD from IR only for z<3







### BH galaxy scaling relations

- Scaling relations between:
  - M<sub>BH</sub> M<sub>bulge</sub> L<sub>bulge</sub> (Kormendy & Richstone 1995)
  - M<sub>BH</sub> σ<sub>bulge</sub> (Ferrarese & Merritt 2000)
- σ<sub>bulge</sub> measured well outside the BH gravitational sphere of influence
- Coincidence ?
- Results of coeval growth and common evolution?



Kormendy & Ho 2013

BH-galaxy co-evolution paradigm



### **BH-galaxy co-evolution paradigm**





Klindt+19

### Two paths of AGN-galaxy co-evolution

#### Low luminosity AGN (90%):

SF luminosity independent from AGN luminosity → secular, non merger driven SF

#### High luminosity AGN (10%):

SF luminosity correlates with AGN luminosity  $\rightarrow$  rapid burst of activity





### Merger driven accretion - Secular accretion

#### **Merger driven**

- High-luminosity AGN
- SF correlates with AGN
   luminosity
- More common at high *z*?



#### Secular accretion

- Low-luminosity AGN
- SF independent from AGN luminosity
- Disk instabilities, bars, or minor mergers ?

