Linee di ricerca RSN4: Multi-Messenger Astrophysics - GW

Paolo D'Avanzo INAF – Osservatorio Astronomico di Brera

Credit: National Science Foundation/LIGO/Sonoma University/A. Simmonet

The GW era

The GW era: GW 150914

Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

INAF

PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott *et al.** (LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+4}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

Primary black hole mass	$36^{+5}_{-4}M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4} M_{\odot}$
Final black hole mass	$62^{+4}_{-4} M_{\odot}$
Final black hole spin	$0.67^{+0.05}_{-0.07}$
Luminosity distance	410 ⁺¹⁶⁰ ₋₁₈₀ Mpc
Source redshift z	$0.09\substack{+0.03\\-0.04}$

GW 150914 - EM search

NS-NS / NS-BH electromagnetic counterparts

NS-NS / NS-BH electromagnetic counterparts

Kilonova

A key signature of an NS–NS/NS–BH binary merger is the production of a so-called "kilonova" (aka "macronova") due to the decay of heavy radioactive species produced by the *r*-process and ejected during the merger that is expected to provide a source of heating and radiation (Li and Paczynski 1998; Rosswog, 2005; Metzger et al., 2010).

Follow-up strategy

Follow-up strategy

The GW era – 01 & 02

Sept 2015 – Jan 2016: LVC O1 science run Nov 2016 – Aug 2017: LVC O2 science run

Event	$m_1/{ m M}_{\odot}$	$m_2/{ m M}_{\odot}$	${\cal M}/{ m M}_{\odot}$	$\chi_{ ext{eff}}$	$M_{ m f}/{ m M}_{\odot}$	$a_{ m f}$	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\rm peak}/({\rm ergs^{-1}})$	$d_L/{\rm Mpc}$	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1\substack{+0.4\\-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3\substack{+14.0\\-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1\substack{+4.9\\-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} \times 10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03\substack{+0.19 \\ -0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36\substack{+0.21 \\ -0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19 \\ -0.20}$	1033
GW170809	$35.2\substack{+8.3\\-6.0}$	$23.8\substack{+5.2\\-5.1}$	$25.0\substack{+2.1\\-1.6}$	$0.07\substack{+0.16 \\ -0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} \times 10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07\substack{+0.12 \\ -0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72\substack{+0.07 \\ -0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00\substack{+0.02\\-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8\substack{+4.3\\-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8^{+4.8}_{-3.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07\\-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4^{+6.3}_{-7.1}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71^{\rm +0.08}_{\rm -0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} \times 10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651

The GW era – 01 & 02

Sept 2015 – Jan 2016: LVC O1 science run Nov 2016 – Aug 2017: LVC O2 science run

Event	$m_1/{ m M}_{\odot}$	m_2/M_\odot	${\cal M}/{ m M}_{\odot}$	$\chi_{ ext{eff}}$	$M_{ m f}/{ m M}_{\odot}$	$a_{ m f}$	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\rm peak}/({\rm ergs^{-1}})$	$d_L/{\rm Mpc}$	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1\substack{+0.4\\-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0\substack{+0.1\\-0.2}$	$3.4^{+0.7}_{-1.7} imes 10^{56}$	440^{+180}_{-190}	$0.09^{+0.04}_{-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1\substack{+4.9\\-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} imes 10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07\\-0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} imes 10^{56}$	320^{+120}_{-110}	$0.07^{+0.02}_{-0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36\substack{+0.21 \\ -0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5} imes 10^{56}$	2750^{+1350}_{-1320}	$0.48^{+0.19}_{-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8\substack{+5.2\\-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4_{-3.7}^{+5.2}$	$0.70\substack{+0.08 \\ -0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} imes 10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72\substack{+0.07 \\ -0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} imes 10^{56}$	580^{+160}_{-210}	$0.12^{+0.03}_{-0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00\substack{+0.02\\-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8^{+4.8}_{-3.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4^{+6.3}_{-7.1}$	$29.3^{+4.2}_{-3.2}$	$0.08\substack{+0.20\\-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08 \\ -0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} \times 10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651

The GW era – 01 & 02

Sept 2015 – Jan 2016: LVC O1 science run Nov 2016 – Aug 2017: LVC O2 science run

Event	$m_1/{ m M}_{\odot}$	$m_2/{ m M}_{\odot}$	$\mathcal{M}/\mathrm{M}_{\odot}$	$\chi_{ ext{eff}}$	$M_{ m f}/{ m M}_{\odot}$	$a_{ m f}$	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\rm peak}/({\rm ergs^{-1}})$	$d_L/{\rm Mpc}$	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1\substack{+0.4\\-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21^{+0.09}_{-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09^{+0.04}_{-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1\substack{+4.9\\-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} imes 10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} imes 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5} imes 10^{56}$	2750^{+1350}_{-1320}	$0.48^{+0.19}_{-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8\substack{+5.2\\-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07\substack{+0.16 \\ -0.16}$	$56.4_{-3.7}^{+5.2}$	$0.70\substack{+0.08 \\ -0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} imes 10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	53.4 ^{+3.2}	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580+160	$0.12^{+0.03}_{-0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00\substack{+0.02\\-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1\times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8^{+4.8}_{-3.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1020^{+430}_{-360}	$0.20^{+0.07}_{-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4^{+6.3}_{-7.1}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71^{+0.08}_{-0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} imes 10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651

GW 170817 & GRB 170817A

Abbott+17; Goldstein+17; Savchenko+17

GW 170817 / GRB 170817A / AT2017gfo 🔎

INAF ISTITUTO NAZIONALE

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.* (LIGO Scientific Collaboration and Virgo Collaboration) (Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

GW 170817 / GRB 170817A / AT2017gfo 🔎

GW 170817 / GRB 170817A / AT2017gfo 🔎

Soares-Santos+17; Tanvir+17; Valenti+17 and many others)

Covino et al., 2017

INAF

Full characterization of the KN properties

16.4d *Radio* 1st detection of the afterglow

, detection of the afterglow at the peak

The radio afterglow is detected with an angular size < 2 mas in VLBI data obtained ~ 207 d after the merger. Evidence for superluminal motion is also found measuring an angular offset between T+75 d and T+235 d.

G 53.39"

53,40'

-23°22'53 38

G 53.39"

53.40'

13h09m48.0695s 48.0690s

D Choked jet cocoon

48.0685s

RA

E Choked jet cocoon simulated image + real nois

Ghirlanda+17[™]

48.0685s

48.0680

The radio afterglow is detected with an angular size < 2 mas in VLBI data obtained ~ 207 d after the merger. Evidence for superluminal motion is also found measuring an angular offset between T+75 d and T+235 d. These findings, together with the afterglow light curve modelling,

These findings, together with the afterglow light curve modelling, support the structured jet model. Fit to the data and numerical simulations are in agreement with the scenario of a structured jet with a relativistic core with $\theta_{iet} < 5 \text{ deg and } \theta_{view} \sim 20 \text{ deg.}$

Alexander+17,18; PDA+18; Dobie+18; Fong+19; Haggard+17; Hallinan+17; Hajela+19; Margutti+17,18; Mooley+18a,b; Reasmi+18; Ruan+18; Troja+18a,b, 19,20; Ghirlanda+19; Piro+19; Margutti & Chornock 21 and many others

GRB170817A: still detected after years

GRB 170817A

GRB 170817A

- GW 170717 / GRB 170817A / AT2017gfo results:

- Definition and consolidation of successful follow-up strategies
- First GW EM counterpart (at all wavelengths)
- First unambiguous observational evidence for a kilonova
- Evidence for kilonovae as a heavy elements factory
- `Smoking gun' for short GRB progenitors
- Clues on short GRB outflow geometry and properties: first evidence for a structured jet
- Direct EM distance determination (cosmology)

- Still a number of open issues

- what about BH-NS EM counterparts?
- what is the origin of the blue KN component?
- are KNe associated to every short GRB?
- how to unveil the nature of the NS-NS remnant?
- (...)

-Scientific perspectives and opportunities:

- Characterize the counterparts of NS-NS / NS-BH mergers
- Determine the yield of heavy elements from KNe
- Study the jet structure, rate and energetics of short GRBs
- Characterize the environment & probe into the binary evolutionary channels
- Direct EM distance determinations on a sample of events
- The unknown

The GW era – O3

Updated 16 June 2022	— 01	— 02	O 3	— 04	O5
LIGO	80 Mpc	100 Мрс	100-140 Мрс	160-190 Мрс	240-325 Мрс
Virgo		30 Мрс	40-50 Мрс	80-115 Мрс	150-260 Мрс
KAGRA			0.7 Мрс	(1-3) ~ 10 Mpc	25-128 Мрс
G2002127-v12 20	15 2016	2017 2018 2	019 2020 2021	2022 2023 2024 2025 20	126 2027 2028

The GW era – O3a

Event	$\stackrel{M}{(M_{\odot})}$	${}^{\mathcal{M}}_{(M_{\odot})}$	${m_1 \atop (M_{\odot})}$	${m_2 \atop (M_{\odot})}$	$\chi_{ m eff}$	$D_{\rm L}$ (Gpc)	z	${M_{ m f} \over (M_{\odot})}$	$\chi_{ m f}$	$\frac{\Delta\Omega}{(\deg^2)}$	SNR
$GW190408_{-181802}$	$43.0^{+4.2}_{-3.0}$	$18.3^{+1.9}_{-1.2}$	$24.6^{+5.1}_{-3.4}$	$18.4^{+3.3}_{-3.6}$	$-0.03^{+0.14}_{-0.19}$	$1.55\substack{+0.40\\-0.60}$	$0.29\substack{+0.06\\-0.10}$	$41.1^{+3.9}_{-2.8}$	$0.67\substack{+0.06 \\ -0.07}$	150	$15.3^{+0.2}_{-0.3}$
GW190412	$38.4^{+3.8}_{-3.7}$	$13.3_{-0.3}^{+0.4}$	$30.1^{+4.7}_{-5.1}$	$8.3^{+1.6}_{-0.9}$	$0.25\substack{+0.08 \\ -0.11}$	$0.74\substack{+0.14 \\ -0.17}$	$0.15\substack{+0.03 \\ -0.03}$	$37.3^{+3.9}_{-3.8}$	$0.67\substack{+0.05\\-0.06}$	21	$18.9^{+0.2}_{-0.3}$
$GW190413_052954$	$58.6^{+13.3}_{-9.7}$	$24.6^{+5.5}_{-4.1}$	$34.7^{+12.6}_{-8.1}$	$23.7^{+7.3}_{-6.7}$	$-0.01^{+0.29}_{-0.34}$	$3.55^{+2.27}_{-1.66}$	$0.59^{+0.29}_{-0.24}$	$56.0^{+12.5}_{-9.2}$	$0.68^{+0.12}_{-0.13}$	1500	$8.9^{+0.4}_{-0.7}$
$GW190413_{-}134308$	$78.8^{+17.4}_{-11.9}$	$33.0^{+8.2}_{-5.4}$	$47.5^{+13.5}_{-10.7}$	$31.8^{+11.7}_{-10.8}$	$-0.03^{+0.25}_{-0.29}$	$4.45_{-2.12}^{+2.48}$	$0.71\substack{+0.31 \\ -0.30}$	$75.5^{+16.4}_{-11.4}$	$0.68\substack{+0.10\\-0.12}$	730	$10.0\substack{+0.4 \\ -0.5}$
GW190421_213856	$72.9^{+13.4}_{-9.2}$	$31.2^{+5.9}_{-4.2}$	$41.3^{+10.4}_{-6.9}$	$31.9^{+8.0}_{-8.8}$	$-0.06^{+0.22}_{-0.27}$	$2.88^{+1.37}_{-1.38}$	$0.49\substack{+0.19\\-0.21}$	$69.7^{+12.5}_{-8.7}$	$0.67\substack{+0.10\\-0.11}$	1200	$10.7^{+0.2}_{-0.4}$
GW190424_180648	$72.6^{+13.3}_{-10.7}$	$31.0^{+5.8}_{-4.6}$	$40.5^{+11.1}_{-7.3}$	$31.8^{+7.6}_{-7.7}$	$0.13^{+0.22}_{-0.22}$	$2.20^{+1.58}_{-1.16}$	$0.39\substack{+0.23\\-0.19}$	$68.9^{+12.4}_{-10.1}$	$0.74_{-0.09}^{+0.09}$	28000	$10.4^{+0.2}_{-0.4}$
GW190425	$3.4^{+0.3}_{-0.1}$	$1.44_{-0.02}^{+0.02}$	$2.0^{+0.6}_{-0.3}$	$1.4_{-0.3}^{+0.3}$	$0.06\substack{+0.11\\-0.05}$	$0.16\substack{+0.07\\-0.07}$	$0.03\substack{+0.01 \\ -0.02}$	_	_	10000	$12.4_{-0.4}^{+0.3}$
$GW190426_{-}152155$	$7.2^{+3.5}_{-1.5}$	$2.41^{+0.08}_{-0.08}$	$5.7^{+3.9}_{-2.3}$	$1.5^{+0.8}_{-0.5}$	$-0.03^{+0.32}_{-0.30}$	$0.37\substack{+0.18 \\ -0.16}$	$0.08\substack{+0.04\\-0.03}$	_	_	1300	$8.7^{+0.5}_{-0.6}$
$GW190503_185404$	$71.7^{+9.4}_{-8.3}$	$30.2^{+4.2}_{-4.2}$	$43.3^{+9.2}_{-8.1}$	$28.4_{-8.0}^{+7.7}$	$-0.03^{+0.20}_{-0.26}$	$1.45\substack{+0.69\\-0.63}$	$0.27\substack{+0.11 \\ -0.11}$	$68.6^{+8.8}_{-7.7}$	$0.66\substack{+0.09\\-0.12}$	94	$12.4_{-0.3}^{+0.2}$
$GW190512_{-}180714$	$35.9^{+3.8}_{-3.5}$	$14.6^{+1.3}_{-1.0}$	$23.3^{+5.3}_{-5.8}$	$12.6^{+3.6}_{-2.5}$	$0.03\substack{+0.12\\-0.13}$	$1.43^{+0.55}_{-0.55}$	$0.27\substack{+0.09 \\ -0.10}$	$34.5^{+3.8}_{-3.5}$	$0.65\substack{+0.07\\-0.07}$	220	$12.2_{-0.4}^{+0.2}$
GW190513_205428	$53.9^{+8.6}_{-5.9}$	$21.6^{+3.8}_{-1.9}$	$35.7^{+9.5}_{-9.2}$	$18.0^{+7.7}_{-4.1}$	$0.11^{+0.28}_{-0.17}$	$2.06\substack{+0.88\\-0.80}$	$0.37\substack{+0.13 \\ -0.13}$	$51.6^{+8.2}_{-5.8}$	$0.68\substack{+0.14\\-0.12}$	520	$12.9^{+0.3}_{-0.4}$
$GW190514_065416$	$67.2^{+18.7}_{-10.8}$	$28.5^{+7.9}_{-4.8}$	$39.0^{+14.7}_{-8.2}$	$28.4^{+9.3}_{-8.8}$	$-0.19^{+0.29}_{-0.32}$	$4.13^{+2.65}_{-2.17}$	$0.67\substack{+0.33 \\ -0.31}$	$64.5^{+17.9}_{-10.4}$	$0.63\substack{+0.11 \\ -0.15}$	3000	$8.2^{+0.3}_{-0.6}$
$GW190517_055101$	$63.5^{+9.6}_{-9.6}$	$26.6^{+4.0}_{-4.0}$	$37.4^{+11.7}_{-7.6}$	$25.3^{+7.0}_{-7.3}$	$0.52\substack{+0.19 \\ -0.19}$	$1.86^{+1.62}_{-0.84}$	$0.34\substack{+0.24 \\ -0.14}$	$59.3^{+9.1}_{-8.9}$	$0.87\substack{+0.05\\-0.07}$	470	$10.7\substack{+0.4 \\ -0.6}$
$GW190519_{-}153544$	$106.6^{+13.5}_{-14.8}$	$\frac{1}{3}44.5^{+6.4}_{-7.1}$	$66.0^{+10.7}_{-12.0}$	$40.5^{+11.0}_{-11.1}$	$0.31\substack{+0.20 \\ -0.22}$	$2.53^{+1.83}_{-0.92}$	$0.44_{-0.14}^{+0.25}$	$101.0^{+12.4}_{-13.8}$	$^{4}_{8}0.79^{+0.07}_{-0.13}$	860	$15.6\substack{+0.2\\-0.3}$
GW190521	$163.9^{+39.2}_{-23.5}$	$269.2^{+17.0}_{-10.6}$	$95.3^{+28.7}_{-18.9}$	$69.0^{+22.7}_{-23.1}$	$0.03\substack{+0.32 \\ -0.39}$	$3.92^{+2.19}_{-1.95}$	$0.64\substack{+0.28\\-0.28}$	$156.3^{+36.8}_{-22.4}$	$^{8}_{4}0.71^{+0.12}_{-0.16}$	1000	$14.2^{+0.3}_{-0.3}$
GW190521_074359	$74.7^{+7.0}_{-4.8}$	$32.1^{+3.2}_{-2.5}$	$42.2^{+5.9}_{-4.8}$	$32.8^{+5.4}_{-6.4}$	$0.09\substack{+0.10\\-0.13}$	$1.24_{-0.57}^{+0.40}$	$0.24\substack{+0.07\\-0.10}$	$71.0^{+6.5}_{-4.4}$	$0.72^{+0.05}_{-0.07}$	550	$25.8^{+0.1}_{-0.2}$
$GW190527_092055$	$59.1^{+21.3}_{-9.8}$	$24.3^{+9.1}_{-4.2}$	$36.5^{+16.4}_{-9.0}$	$22.6^{+10.5}_{-8.1}$	$0.11^{+0.28}_{-0.28}$	$2.49^{+2.48}_{-1.24}$	$0.44_{-0.20}^{+0.34}$	$56.4^{+20.2}_{-9.3}$	$0.71\substack{+0.12 \\ -0.16}$	3700	$8.1^{+0.3}_{-0.9}$
$GW190602_{-}175927$	$116.3^{+19.0}_{-15.6}$	$^{0}_{5}49.1^{+9.1}_{-8.5}$	$69.1^{+15.7}_{-13.0}$	$47.8^{+14.3}_{-17.4}$	$0.07\substack{+0.25\\-0.24}$	$2.69^{+1.79}_{-1.12}$	$0.47\substack{+0.25\\-0.17}$	$110.9^{+17.5}_{-14.6}$	$50.70^{+0.10}_{-0.14}$	690	$12.8^{+0.2}_{-0.3}$
$GW190620_{-}030421$	$92.1^{+18.5}_{-13.1}$	$38.3^{+8.3}_{-6.5}$	$57.1^{+16.0}_{-12.7}$	$35.5^{+12.2}_{-12.3}$	$0.33\substack{+0.22\\-0.25}$	$2.81^{+1.68}_{-1.31}$	$0.49\substack{+0.23\\-0.20}$	$87.2^{+16.8}_{-12.1}$	$0.79\substack{+0.08\\-0.15}$	7200	$12.1_{-0.4}^{+0.3}$
$GW190630_{-}185205$	$59.1^{+4.6}_{-4.8}$	$24.9^{+2.1}_{-2.1}$	$35.1^{+6.9}_{-5.6}$	$23.7^{+5.2}_{-5.1}$	$0.10\substack{+0.12 \\ -0.13}$	$0.89\substack{+0.56\\-0.37}$	$0.18\substack{+0.10 \\ -0.07}$	$56.4^{+4.4}_{-4.6}$	$0.70\substack{+0.05 \\ -0.07}$	1200	$15.6_{-0.3}^{+0.2}$
GW190701_203306	$94.3^{+12.1}_{-9.5}$	$40.3^{+5.4}_{-4.9}$	$53.9^{+11.8}_{-8.0}$	$40.8^{+8.7}_{-12.0}$	$-0.07^{+0.23}_{-0.29}$	$2.06\substack{+0.76\\-0.73}$	$0.37\substack{+0.11 \\ -0.12}$	$90.2^{+11.3}_{-8.9}$	$0.66\substack{+0.09\\-0.13}$	46	$11.3^{+0.2}_{-0.3}$
GW190706_222641	$104.1^{+20.2}_{-13.9}$	$242.7^{+10.0}_{-7.0}$	$67.0^{+14.6}_{-16.2}$	$38.2^{+14.6}_{-13.3}$	$0.28^{+0.26}_{-0.29}$	$4.42_{-1.93}^{+2.59}$	$0.71\substack{+0.32 \\ -0.27}$	$99.0^{+18.3}_{-13.5}$	$0.78\substack{+0.09 \\ -0.18}$	650	$12.6^{+0.2}_{-0.4}$
$GW190707_093326$	$20.1^{+1.9}_{-1.3}$	$8.5\substack{+0.6\\-0.5}$	$11.6^{+3.3}_{-1.7}$	$8.4^{+1.4}_{-1.7}$	$-0.05\substack{+0.10\\-0.08}$	$0.77\substack{+0.38\\-0.37}$	$0.16\substack{+0.07 \\ -0.07}$	$19.2^{+1.9}_{-1.3}$	$0.66\substack{+0.03\\-0.04}$	1300	$13.3^{+0.2}_{-0.4}$
GW190708_232457	$30.9^{+2.5}_{-1.8}$	$13.2^{+0.9}_{-0.6}$	$17.6^{+4.7}_{-2.3}$	$13.2^{+2.0}_{-2.7}$	$0.02\substack{+0.10 \\ -0.08}$	$0.88\substack{+0.33\\-0.39}$	$0.18\substack{+0.06 \\ -0.07}$	$29.5^{+2.5}_{-1.8}$	$0.69\substack{+0.04 \\ -0.04}$	14000	$13.1_{-0.3}^{+0.2}$
$GW190719_{-215514}$	$57.8^{+18.3}_{-10.7}$	$23.5_{-4.0}^{+6.5}$	$36.5^{+18.0}_{-10.3}$	$20.8^{+9.0}_{-7.2}$	$0.32\substack{+0.29\\-0.31}$	$3.94^{+2.59}_{-2.00}$	$0.64^{+0.33}_{-0.29}$	$54.9^{+17.3}_{-10.2}$	$0.78\substack{+0.11 \\ -0.17}$	2900	$8.3\substack{+0.3 \\ -0.8}$
$GW190720_{-}000836$	$21.5^{+4.3}_{-2.3}$	$8.9^{+0.5}_{-0.8}$	$13.4\substack{+6.7 \\ -3.0}$	$7.8^{+2.3}_{-2.2}$	$0.18\substack{+0.14 \\ -0.12}$	$0.79\substack{+0.69 \\ -0.32}$	$0.16\substack{+0.12 \\ -0.06}$	$20.4^{+4.5}_{-2.2}$	$0.72\substack{+0.06 \\ -0.05}$	460	$11.0\substack{+0.3 \\ -0.7}$
$GW190727_{-}060333$	$67.1^{+11.7}_{-8.0}$	$28.6^{+5.3}_{-3.7}$	$38.0^{+9.5}_{-6.2}$	$29.4_{-8.4}^{+7.1}$	$0.11\substack{+0.26 \\ -0.25}$	$3.30^{+1.54}_{-1.50}$	$0.55\substack{+0.21 \\ -0.22}$	$63.8^{+10.9}_{-7.5}$	$0.73\substack{+0.10 \\ -0.10}$	830	$11.9^{+0.3}_{-0.5}$
GW190728_064510	$20.6^{+4.5}_{-1.3}$	$8.6\substack{+0.5 \\ -0.3}$	$12.3^{+7.2}_{-2.2}$	$8.1^{+1.7}_{-2.6}$	$0.12\substack{+0.20 \\ -0.07}$	$0.87\substack{+0.26 \\ -0.37}$	$0.18\substack{+0.05 \\ -0.07}$	$19.6^{+4.7}_{-1.3}$	$0.71\substack{+0.04 \\ -0.04}$	400	$13.0^{+0.2}_{-0.4}$
$GW190731_{-}140936$	$70.1^{+15.8}_{-11.3}$	$29.5^{+7.1}_{-5.2}$	$41.5^{+12.2}_{-9.0}$	$28.8^{+9.7}_{-9.5}$	$0.06\substack{+0.24 \\ -0.24}$	$3.30^{+2.39}_{-1.72}$	$0.55\substack{+0.31 \\ -0.26}$	$67.0^{+14.6}_{-10.8}$	$0.70\substack{+0.10 \\ -0.13}$	3400	$8.7^{+0.2}_{-0.5}$
GW190803_022701	$64.5^{+12.6}_{-9.0}$	$27.3^{+5.7}_{-4.1}$	$37.3^{+10.6}_{-7.0}$	$27.3^{+7.8}_{-8.2}$	$-0.03^{+0.24}_{-0.27}$	$3.27^{+1.95}_{-1.58}$	$0.55\substack{+0.26 \\ -0.24}$	$61.7^{+11.8}_{-8.5}$	$0.68\substack{+0.10\\-0.11}$	1500	$8.6\substack{+0.3 \\ -0.5}$
GW190814	$25.8^{+1.0}_{-0.9}$	$6.09\substack{+0.06 \\ -0.06}$	$23.2^{+1.1}_{-1.0}$	$2.59\substack{+0.08 \\ -0.09}$	$0.00\substack{+0.06 \\ -0.06}$	$0.24\substack{+0.04 \\ -0.05}$	$0.05\substack{+0.009\\-0.010}$	$25.6^{+1.1}_{-0.9}$	$0.28\substack{+0.02\\-0.02}$	19	$24.9^{+0.1}_{-0.2}$
GW190828_063405	$58.0^{+7.7}_{-4.8}$	$25.0^{+3.4}_{-2.1}$	$32.1^{+5.8}_{-4.0}$	$26.2^{+4.6}_{-4.8}$	$0.19\substack{+0.15 \\ -0.16}$	$2.13\substack{+0.66 \\ -0.93}$	$0.38\substack{+0.10 \\ -0.15}$	$54.9^{+7.2}_{-4.3}$	$0.75\substack{+0.06 \\ -0.07}$	520	$16.2^{+0.2}_{-0.3}$
GW190828_065509	$34.4^{+5.4}_{-4.4}$	$13.3^{+1.2}_{-1.0}$	$24.1^{+7.0}_{-7.2}$	$10.2^{+3.6}_{-2.1}$	$0.08\substack{+0.16 \\ -0.16}$	$1.60\substack{+0.62 \\ -0.60}$	$0.30\substack{+0.10 \\ -0.10}$	$33.1^{+5.5}_{-4.5}$	$0.65\substack{+0.08 \\ -0.08}$	660	$10.0\substack{+0.3 \\ -0.5}$
GW190909_114149	$75.0^{+55.9}_{-17.6}$	$30.9^{+17.2}_{-7.5}$	$45.8^{+52.7}_{-13.3}$	$28.3^{+13.4}_{-12.7}$	$-0.06\substack{+0.37\\-0.36}$	$3.77^{+3.27}_{-2.22}$	$0.62\substack{+0.41 \\ -0.33}$	$72.0^{+54.9}_{-16.8}$	$0.66\substack{+0.15\\-0.20}$	4700	$8.1^{+0.4}_{-0.6}$
$GW190910_{-}112807$	$79.6^{+9.3}_{-9.1}$	$34.3^{+4.1}_{-4.1}$	$43.9^{+7.6}_{-6.1}$	$35.6^{+6.3}_{-7.2}$	$0.02\substack{+0.18 \\ -0.18}$	$1.46^{+1.03}_{-0.58}$	$0.28\substack{+0.16 \\ -0.10}$	$75.8^{+8.5}_{-8.6}$	$0.70\substack{+0.08 \\ -0.07}$	11000	$14.1_{-0.3}^{+0.2}$
GW190915_235702	$59.9^{+7.5}_{-6.4}$	$25.3^{+3.2}_{-2.7}$	$35.3^{+9.5}_{-6.4}$	$24.4_{-6.1}^{+5.6}$	$0.02\substack{+0.20 \\ -0.25}$	$1.62\substack{+0.71 \\ -0.61}$	$0.30\substack{+0.11 \\ -0.10}$	$57.2^{+7.1}_{-6.0}$	$0.70\substack{+0.09 \\ -0.11}$	400	$13.6\substack{+0.2 \\ -0.3}$
GW190924_021846	$13.9^{+5.1}_{-1.0}$	$5.8^{+0.2}_{-0.2}$	$8.9^{+7.0}_{-2.0}$	$5.0^{+1.4}_{-1.9}$	$0.03\substack{+0.30 \\ -0.09}$	$0.57\substack{+0.22 \\ -0.22}$	$0.12\substack{+0.04 \\ -0.04}$	$13.3^{+5.2}_{-1.0}$	$0.67\substack{+0.05 \\ -0.05}$	360	$11.5\substack{+0.3 \\ -0.4}$
GW190929_012149	$104.3^{+34.9}_{-25.2}$	$235.8^{+14.9}_{-8.2}$	$80.8^{+33.0}_{-33.2}$	$24.1\substack{+19.3 \\ -10.6}$	$0.01\substack{+0.34 \\ -0.33}$	$2.13^{+3.65}_{-1.05}$	$0.38\substack{+0.49 \\ -0.17}$	$101.5^{+33.6}_{-25.3}$	$^{5}_{3}0.66^{+0.20}_{-0.31}$	2200	$10.1\substack{+0.6 \\ -0.8}$
GW190930_133541	$20.3^{+8.9}_{-1.5}$	$8.5^{+0.5}_{-0.5}$	$12.3^{+12.4}_{-2.3}$	$7.8^{+1.7}_{-3.3}$	$0.14^{+0.31}_{-0.15}$	$0.76^{+0.36}_{-0.32}$	$0.15_{-0.06}^{+0.06}$	$19.4^{+9.2}_{-1.5}$	$0.72^{+0.07}_{-0.06}$	1700	$9.5^{+0.3}_{-0.5}$

O3a (Apr – Sep 2019) 39 events, 3 with *M* < 3 *M_{sun}:*

GW 190425 -> BNS, 10⁴ deg² skymap GW 190426 -> BHNS, 10³ deg² skymap GW190814 -> (?) BHNS, 19 deg² skymap

The GW era – O3b

Event	$\stackrel{M}{(M_{\odot})}$	(M_{\odot})	${m_1 \atop (M_{\odot})}$	${m_2 \atop (M_{\odot})}$	$\chi_{ m eff}$	$D_{\rm L}$ (Gpc)	z	${M_{ m f} \over (M_{\odot})}$	$\chi_{ m f}$	$\frac{\Delta\Omega}{(\deg^2)}$	SNR	
GW191103_012549	$20.0^{+3.7}_{-1.8}$	$8.34_{-0.57}^{+0.66}$	$11.8^{+6.2}_{-2.2}$	$7.9^{+1.7}_{-2.4}$	$0.21\substack{+0.16 \\ -0.10}$	$0.99\substack{+0.50\\-0.47}$	$0.20\substack{+0.09 \\ -0.09}$	$19.0\substack{+3.8 \\ -1.7}$	$0.75\substack{+0.06 \\ -0.05}$	2500	$8.9\substack{+0.3 \\ -0.5}$	P
$GW191105_143521$	$18.5^{+2.1}_{-1.3}$	$7.82\substack{+0.61 \\ -0.45}$	$10.7^{+3.7}_{-1.6}$	$7.7^{+1.4}_{-1.9}$	$-0.02\substack{+0.13\\-0.09}$	$1.15\substack{+0.43 \\ -0.48}$	$0.23\substack{+0.07 \\ -0.09}$	$17.6^{+2.1}_{-1.2}$	$0.67\substack{+0.04 \\ -0.05}$	640	$9.7\substack{+0.3 \\ -0.5}$	î
$GW191109_010717$	112^{+20}_{-16}	$47.5^{+9.6}_{-7.5}$	65^{+11}_{-11}	47^{+15}_{-13}	$-0.29\substack{+0.42\\-0.31}$	$1.29^{+1.13}_{-0.65}$	$0.25\substack{+0.18 \\ -0.12}$	107^{+18}_{-15}	$0.61\substack{+0.18 \\ -0.19}$	1600	$17.3\substack{+0.5 \\ -0.5}$	
$GW191113_071753$	$34.5^{+10.5}_{-9.8}$	$10.7^{+1.1}_{-1.0}$	29^{+12}_{-14}	$5.9^{+4.4}_{-1.3}$	$0.00\substack{+0.37 \\ -0.29}$	$1.37^{+1.15}_{-0.62}$	$0.26\substack{+0.18\\-0.11}$	34^{+11}_{-10}	$0.45\substack{+0.33 \\ -0.11}$	3600	$7.9^{+0.5}_{-1.1}$	
$GW191126_115259$	$20.7^{+3.4}_{-2.0}$	$8.65\substack{+0.95 \\ -0.71}$	$12.1^{+5.5}_{-2.2}$	$8.3^{+1.9}_{-2.4}$	$0.21\substack{+0.15 \\ -0.11}$	$1.62\substack{+0.74 \\ -0.74}$	$0.30\substack{+0.12 \\ -0.13}$	$19.6\substack{+3.5 \\ -2.0}$	$0.75\substack{+0.06 \\ -0.05}$	1400	$8.3\substack{+0.2 \\ -0.5}$	
$GW191127_050227$	80^{+39}_{-22}	$29.9^{+11.7}_{-9.1}$	53^{+47}_{-20}	24^{+17}_{-14}	$0.18\substack{+0.34 \\ -0.36}$	$3.4^{+3.1}_{-1.9}$	$0.57\substack{+0.40 \\ -0.29}$	76^{+39}_{-21}	$0.75\substack{+0.13 \\ -0.29}$	980	$9.2^{+0.7}_{-0.6}$	
$GW191129_134029$	$17.5^{+2.4}_{-1.2}$	$7.31\substack{+0.43 \\ -0.28}$	$10.7^{+4.1}_{-2.1}$	$6.7^{+1.5}_{-1.7}$	$0.06\substack{+0.16 \\ -0.08}$	$0.79\substack{+0.26 \\ -0.33}$	$0.16\substack{+0.05 \\ -0.06}$	$16.8^{+2.5}_{-1.2}$	$0.69\substack{+0.03 \\ -0.05}$	850	$13.1\substack{+0.2 \\ -0.3}$	
GW191204_110529	$47.2^{+9.2}_{-8.0}$	$19.8\substack{+3.6 \\ -3.3}$	$27.3^{+11.0}_{-6.0}$	$19.3\substack{+5.6 \\ -6.0}$	$0.05\substack{+0.26 \\ -0.27}$	$1.8^{+1.7}_{-1.1}$	$0.34\substack{+0.25\\-0.18}$	$45.0^{+8.6}_{-7.6}$	$0.71\substack{+0.12 \\ -0.11}$	3700	$8.8\substack{+0.4 \\ -0.6}$	
$GW191204_171526$	$20.21^{+1.70}_{-0.96}$	$8.55\substack{+0.38 \\ -0.27}$	$11.9^{+3.3}_{-1.8}$	$8.2^{+1.4}_{-1.6}$	$0.16\substack{+0.08 \\ -0.05}$	$0.65\substack{+0.19 \\ -0.25}$	$0.13\substack{+0.04 \\ -0.05}$	$19.21\substack{+1.79 \\ -0.95}$	$0.73\substack{+0.03 \\ -0.03}$	350	$17.5\substack{+0.2 \\ -0.2}$	
GW191215_223052	$43.3^{+5.3}_{-4.3}$	$18.4^{+2.2}_{-1.7}$	$24.9^{+7.1}_{-4.1}$	$18.1^{+3.8}_{-4.1}$	$-0.04\substack{+0.17\\-0.21}$	$1.93\substack{+0.89 \\ -0.86}$	$0.35\substack{+0.13 \\ -0.14}$	$41.4^{+5.1}_{-4.1}$	$0.68\substack{+0.07 \\ -0.07}$	530	$11.2^{+0.3}_{-0.4}$	
$\rm GW191216_213338$	$19.81\substack{+2.69\\-0.94}$	$8.33\substack{+0.22\\-0.19}$	$12.1_{-2.3}^{+4.6}$	$7.7^{+1.6}_{-1.9}$	$0.11\substack{+0.13 \\ -0.06}$	$0.34\substack{+0.12\\-0.13}$	$0.07\substack{+0.02 \\ -0.03}$	$18.87\substack{+2.80 \\ -0.94}$	$0.70\substack{+0.03 \\ -0.04}$	490	$18.6\substack{+0.2 \\ -0.2}$	
$GW191219_{-}163120$	$32.3^{+2.2}_{-2.7}$	$4.32\substack{+0.12\\-0.17}$	$31.1^{+2.2}_{-2.8}$	$1.17\substack{+0.07 \\ -0.06}$	$0.00\substack{+0.07\\-0.09}$	$0.55\substack{+0.25 \\ -0.16}$	$0.11\substack{+0.05 \\ -0.03}$	$32.2^{+2.2}_{-2.7}$	$0.14\substack{+0.06 \\ -0.06}$	1500	$9.1^{+0.5}_{-0.8}$	
$\rm GW191222_033537$	79^{+16}_{-11}	$33.8^{+7.1}_{-5.0}$	$45.1^{+10.9}_{-8.0}$	$34.7\substack{+9.3 \\ -10.5}$	$-0.04\substack{+0.20\\-0.25}$	$3.0^{+1.7}_{-1.7}$	$0.51\substack{+0.23 \\ -0.26}$	$75.5\substack{+15.3 \\ -9.9}$	$0.67\substack{+0.08\\-0.11}$	2000	$12.5\substack{+0.2 \\ -0.3}$	
GW191230_180458	86^{+19}_{-12}	$36.5^{+8.2}_{-5.6}$	$49.4^{+14.0}_{-9.6}$	37^{+11}_{-12}	$-0.05\substack{+0.26\\-0.31}$	$4.3^{+2.1}_{-1.9}$	$0.69\substack{+0.26 \\ -0.27}$	82^{+17}_{-11}	$0.68\substack{+0.11 \\ -0.13}$	1100	$10.4\substack{+0.3 \\ -0.4}$	
$GW200105_162426$	$11.0^{+1.5}_{-1.4}$	$3.42\substack{+0.08\\-0.08}$	$9.0\substack{+1.7 \\ -1.7}$	$1.91\substack{+0.33 \\ -0.24}$	$0.00\substack{+0.13\\-0.18}$	$0.27\substack{+0.12\\-0.11}$	$0.06\substack{+0.02\\-0.02}$	$10.7^{+1.5}_{-1.4}$	$0.43\substack{+0.05 \\ -0.02}$	7900	$13.7\substack{+0.2 \\ -0.4}$	
$GW200112_{-155838}$	$63.9^{+5.7}_{-4.6}$	$27.4^{+2.6}_{-2.1}$	$35.6_{-4.5}^{+6.7}$	$28.3\substack{+4.4 \\ -5.9}$	$0.06\substack{+0.15 \\ -0.15}$	$1.25\substack{+0.43\\-0.46}$	$0.24\substack{+0.07 \\ -0.08}$	$60.8^{+5.3}_{-4.3}$	$0.71\substack{+0.06 \\ -0.06}$	4300	$19.8\substack{+0.1 \\ -0.2}$	
$GW200115_042309$	$7.4^{+1.8}_{-1.7}$	$2.43\substack{+0.05 \\ -0.07}$	$5.9^{+2.0}_{-2.5}$	$1.44\substack{+0.85\\-0.29}$	$-0.15\substack{+0.24\\-0.42}$	$0.29\substack{+0.15\\-0.10}$	$0.06\substack{+0.03 \\ -0.02}$	$7.2^{+1.8}_{-1.7}$	$0.42\substack{+0.09 \\ -0.05}$	370	$11.3\substack{+0.3 \\ -0.5}$	
GW200128_022011	75^{+17}_{-12}	$32.0^{+7.5}_{-5.5}$	$42.2^{+11.6}_{-8.1}$	$32.6^{+9.5}_{-9.2}$	$0.12\substack{+0.24 \\ -0.25}$	$3.4^{+2.1}_{-1.8}$	$0.56\substack{+0.28 \\ -0.28}$	71^{+16}_{-11}	$0.74\substack{+0.10 \\ -0.10}$	2600	$10.6\substack{+0.3 \\ -0.4}$	
$GW200129_065458$	$63.4_{-3.6}^{+4.3}$	$27.2^{+2.1}_{-2.3}$	$34.5^{+9.9}_{-3.2}$	$28.9\substack{+3.4 \\ -9.3}$	$0.11\substack{+0.11 \\ -0.16}$	$0.90\substack{+0.29 \\ -0.38}$	$0.18\substack{+0.05 \\ -0.07}$	$60.3\substack{+4.0 \\ -3.3}$	$0.73\substack{+0.06 \\ -0.05}$	130	$26.8\substack{+0.2 \\ -0.2}$	
GW200202_154313	$17.58^{+1.78}_{-0.67}$	$7.49\substack{+0.24 \\ -0.20}$	$10.1^{+3.5}_{-1.4}$	$7.3^{+1.1}_{-1.7}$	$0.04\substack{+0.13 \\ -0.06}$	$0.41\substack{+0.15 \\ -0.16}$	$0.09\substack{+0.03 \\ -0.03}$	$16.76\substack{+1.87 \\ -0.66}$	$0.69\substack{+0.03 \\ -0.04}$	170	$10.8\substack{+0.2 \\ -0.4}$	
$\rm GW200208_130117$	$65.4_{-6.8}^{+7.8}$	$27.7^{+3.6}_{-3.1}$	$37.8^{+9.2}_{-6.2}$	$27.4_{-7.4}^{+6.1}$	$-0.07\substack{+0.22\\-0.27}$	$2.23\substack{+1.00 \\ -0.85}$	$0.40\substack{+0.15 \\ -0.14}$	$62.5_{-6.4}^{+7.3}$	$0.66\substack{+0.09\\-0.13}$	30	$10.8\substack{+0.3 \\ -0.4}$	
GW200208_222617	63^{+100}_{-25}	$19.6^{+10.7}_{-5.1}$	51^{+104}_{-30}	$12.3\substack{+9.0 \\ -5.7}$	$0.45\substack{+0.43 \\ -0.44}$	$4.1_{-1.9}^{+4.4}$	$0.66\substack{+0.54\\-0.28}$	61^{+100}_{-25}	$0.83\substack{+0.14 \\ -0.27}$	2000	$7.4^{+1.4}_{-1.2}$	
$\rm GW200209_085452$	$62.6\substack{+13.9\\-9.4}$	$26.7\substack{+6.0 \\ -4.2}$	$35.6^{+10.5}_{-6.8}$	$27.1\substack{+7.8 \\ -7.8}$	$-0.12\substack{+0.24\\-0.30}$	$3.4^{+1.9}_{-1.8}$	$0.57\substack{+0.25 \\ -0.26}$	$59.9\substack{+13.1 \\ -8.9}$	$0.66\substack{+0.10\\-0.12}$	730	$9.6\substack{+0.4 \\ -0.5}$	
GW200210_092254	$27.0^{+7.1}_{-4.3}$	$6.56\substack{+0.38 \\ -0.40}$	$24.1_{-4.6}^{+7.5}$	$2.83\substack{+0.47 \\ -0.42}$	$0.02\substack{+0.22\\-0.21}$	$0.94\substack{+0.43 \\ -0.34}$	$0.19\substack{+0.08 \\ -0.06}$	$26.7^{+7.2}_{-4.3}$	$0.34\substack{+0.13 \\ -0.08}$	1800	$8.4_{-0.7}^{+0.5}$	(
$GW200216_220804$	81^{+20}_{-14}	$32.9^{+9.3}_{-8.5}$	51^{+22}_{-13}	30^{+14}_{-16}	$0.10\substack{+0.34 \\ -0.36}$	$3.8^{+3.0}_{-2.0}$	$0.63\substack{+0.37 \\ -0.29}$	78^{+19}_{-13}	$0.70\substack{+0.14 \\ -0.24}$	2900	$8.1\substack{+0.4 \\ -0.5}$	
$GW200219_094415$	$65.0^{+12.6}_{-8.2}$	$27.6^{+5.6}_{-3.8}$	$37.5^{+10.1}_{-6.9}$	$27.9^{+7.4}_{-8.4}$	$-0.08\substack{+0.23\\-0.29}$	$3.4^{+1.7}_{-1.5}$	$0.57\substack{+0.22 \\ -0.22}$	$62.2^{+11.7}_{-7.8}$	$0.66\substack{+0.10\\-0.13}$	700	$10.7\substack{+0.3 \\ -0.5}$	•
$GW200220_061928$	148^{+55}_{-33}	62^{+23}_{-15}	87^{+40}_{-23}	61^{+26}_{-25}	$0.06\substack{+0.40 \\ -0.38}$	$6.0\substack{+4.8 \\ -3.1}$	$0.90\substack{+0.55 \\ -0.40}$	141^{+51}_{-31}	$0.71\substack{+0.15 \\ -0.17}$	3000	$7.2^{+0.4}_{-0.7}$	
GW200220_124850	67^{+17}_{-12}	$28.2^{+7.3}_{-5.1}$	$38.9^{+14.1}_{-8.6}$	$27.9^{+9.2}_{-9.0}$	$-0.07\substack{+0.27\\-0.33}$	$4.0^{+2.8}_{-2.2}$	$0.66\substack{+0.36\\-0.31}$	64^{+16}_{-11}	$0.67\substack{+0.11 \\ -0.14}$	3200	$8.5^{+0.3}_{-0.5}$	
$GW200224_222234$	$72.2^{+7.2}_{-5.1}$	$31.1^{+3.2}_{-2.6}$	$40.0\substack{+6.9 \\ -4.5}$	$32.5^{+5.0}_{-7.2}$	$0.10\substack{+0.15 \\ -0.15}$	$1.71\substack{+0.49 \\ -0.64}$	$0.32\substack{+0.08\\-0.11}$	$68.6\substack{+6.6 \\ -4.7}$	$0.73\substack{+0.07 \\ -0.07}$	50	$20.0\substack{+0.2 \\ -0.2}$	
GW200225_060421	$33.5^{+3.6}_{-3.0}$	$14.2^{+1.5}_{-1.4}$	$19.3\substack{+5.0 \\ -3.0}$	$14.0^{+2.8}_{-3.5}$	$-0.12\substack{+0.17\\-0.28}$	$1.15\substack{+0.51 \\ -0.53}$	$0.22\substack{+0.09\\-0.10}$	$32.1_{-2.8}^{+3.5}$	$0.66\substack{+0.07\\-0.13}$	370	$12.5\substack{+0.3 \\ -0.4}$	(
$GW200302_015811$	$57.8^{+9.6}_{-6.9}$	$23.4_{-3.0}^{+4.7}$	$37.8^{+8.7}_{-8.5}$	$20.0\substack{+8.1 \\ -5.7}$	$0.01\substack{+0.25 \\ -0.26}$	$1.48^{+1.02}_{-0.70}$	$0.28\substack{+0.16 \\ -0.12}$	$55.5^{+8.9}_{-6.6}$	$0.66\substack{+0.13 \\ -0.15}$	6000	$10.8\substack{+0.3 \\ -0.4}$	
GW200306_093714	$43.9^{+11.8}_{-7.5}$	$17.5^{+3.5}_{-3.0}$	$28.3^{+17.1}_{-7.7}$	$14.8_{-6.4}^{+6.5}$	$0.32\substack{+0.28 \\ -0.46}$	$2.1^{+1.7}_{-1.1}$	$0.38\substack{+0.24 \\ -0.18}$	$41.7^{+12.3}_{-6.9}$	$0.78\substack{+0.11 \\ -0.26}$	4600	$7.8\substack{+0.4 \\ -0.6}$	
$GW200308_{-173609}^{*}$	$50.6^{+10.9}_{-8.5}$	$19.0\substack{+4.8 \\ -2.8}$	$36.4^{+11.2}_{-9.6}$	$13.8\substack{+7.2 \\ -3.3}$	$0.65\substack{+0.17\\-0.21}$	$5.4^{+2.7}_{-2.6}$	$0.83\substack{+0.32 \\ -0.35}$	$47.4^{+11.1}_{-7.7}$	$0.91\substack{+0.03 \\ -0.08}$	2000	$7.1^{+0.5}_{-0.5}$	
GW200311_115853	$61.9^{+5.3}_{-4.2}$	$26.6^{+2.4}_{-2.0}$	$34.2^{+6.4}_{-3.8}$	$27.7^{+4.1}_{-5.9}$	$-0.02\substack{+0.16\\-0.20}$	$1.17\substack{+0.28 \\ -0.40}$	$0.23\substack{+0.05 \\ -0.07}$	$59.0^{+4.8}_{-3.9}$	$0.69\substack{+0.07 \\ -0.08}$	35	$17.8\substack{+0.2 \\ -0.2}$	
$GW200316_215756$	$21.2^{+7.2}_{-2.0}$	$8.75\substack{+0.62\\-0.55}$	$13.1^{+10.2}_{-2.9}$	$7.8\substack{+1.9 \\ -2.9}$	$0.13\substack{+0.27 \\ -0.10}$	$1.12\substack{+0.47\\-0.44}$	$0.22\substack{+0.08\\-0.08}$	$20.2\substack{+7.4 \\ -1.9}$	$0.70\substack{+0.04 \\ -0.04}$	190	$10.3\substack{+0.4 \\ -0.7}$	
GW200322_091133*	55^{+37}_{-27}	$15.5^{+15.7}_{-3.7}$	34_{-18}^{+48}	$14.0\substack{+16.8 \\ -8.7}$	$0.24\substack{+0.45\\-0.51}$	$3.6^{+7.0}_{-2.0}$	$0.60\substack{+0.84 \\ -0.30}$	53^{+38}_{-26}	$0.78\substack{+0.16 \\ -0.17}$	6500	$6.0^{+1.7}_{-1.2}$	

O3b (Nov 2019 – Mar 2020) 35 events, 2 with $M < 3 M_{SUN}$:

GW 191219 -> BHNS, 10³ deg² skymap GW 200210 -> BHNS/BBH, 10³ deg² skymap

O3: lessons learned

O3: lessons learned

NA BEATA M !!!

O4 timeline

https://observing.docs.ligo.org/plan/

LIGO, Virgo, and KAGRA continue to work to prepare the detectors for the start of O4. Our ability to start O4 in March 2023 is currently under review. Unanticipated delays in some construction elements of LIGO has delayed remaining detector commissioning (...) we expect to be able to make a more confident plan for starting early in January.

During O4, we expect that four facilities (LIGO Hanford (LHO) and Livingston (LLO), KAGRA and Virgo) will observe for one year with a month break in the middle. KAGRA is expected to start with Virgo and LIGO, and then step away for commissioning and return to observing with a greater sensitivity toward the end of the O4 run.

Rates in O4 are highly uncertain: we may have > 3 GW trigger per week

Scheda	Coordinator	# INAF Institutes	# INAF people
AGILE	C. Pittori	8	35
ET	M. Branchesi	13	55
Fermi Science	P. Caraveo	4	12
GAME	L. Piro	4	13
GRAWITA	E. Brocato	11	66
GRB@Mi	G. Ghirlanda	3	13
GRB@OAS	E. Pian	4	11
GuRu	S. Piranomonte	6	9
HERMES	F. Fiore	8	30
INTEGRAL	L. Natalucci	3	14
INTEGRAL HEASS	A. Malizia	3	14
LGWA	J. Harms	9	27
NuMerJet	R. Ciolfi	9	18
Progress	L. A. Antonelli	15	244
Swift	G. Tagliaferri	4	24

Search for	coincident	GW-GRBs
	since O1	

Scheda	Coordinator	# INAF Institutes	# INAF people	
AGILE	C. Pittori	8	35	
ET	M. Branchesi	13	55	
Fermi Science	P. Caraveo	4	12	
GAME	L. Piro	4	13	
GRAWITA	E. Brocato	11	66	Ì
GRB@Mi	G. Ghirlanda	3	13	
GRB@OAS	E. Pian	4	11	
GuRu	S. Piranomonte	6	9	
HERMES	F. Fiore	8	30	Ì
INTEGRAL	L. Natalucci	3	14	
INTEGRAL HEASS	A. Malizia	3	14	
LGWA	J. Harms	9	27	
NuMerJet	R. Ciolfi	9	18	
Progress	L. A. Antonelli	15	244	
Swift	G. Tagliaferri	4	24	

		Scheda	Coordinator	# INAF Institutes	# INAF people
		AGILE	C. Pittori	8	35
Detection of	the short GRB 170817Δ	ET	M. Branchesi	13	55
associa	ated to GW 170817	Fermi Science	P. Caraveo	4	12
Gamma rays, 50 to 300 keV	Gamma rays, 50 to 300 keV GRB 170817A	GAME	L. Piro	4	13
Fermi Reported 16 seconds		GRAWITA	E. Brocato	11	66
after detection		GRB@Mi	G. Ghirlanda	3	13
INTEGRAL Ga	Gamma rays, 100 keV and higher GRB 170817A	GRB@OAS	E. Pian	4	11
after detection	¹ ²⁰⁰⁰] ^ق ۱۱۶۰۰۰۰ [][[[]][]] م مراكب المحمد ا	GuRu	S. Piranomonte	6	9
		HERMES	F. Fiore	8	30
		INTEGRAL	L. Natalucci	3	14
		INTEGRAL HEASS	A. Malizia	3	14
		LGWA	J. Harms	9	27
		NuMerJet	R. Ciolfi	9	18
		Progress	L. A. Antonelli	15	244
		Swift	G. Tagliaferri	4	24

Study of the off-axis GRB afterglow emission -> evidence for structured jet

Swift

G. Tagliaferri

24

4

Progress

Swift

L. A. Antonelli

G. Tagliaferri

15

4

244

24

afterglow emission -> evidence for structured jet

	1.11016	0	00
INTEGRAL	L. Natalucci	3	14
INTEGRAL HEASS	A. Malizia	3	14
LGWA	J. Harms	9	27
NuMerJet	R. Ciolfi	9	18
Progress	L. A. Antonelli	15	244
Swift	G. Tagliaferri	4	24

INAF

GRAvitational Wave Inaf TeAm

~ 100 scientists from 21 Institutes (INAF + Universities) Active since O1

(Super-)GRAWITA & ENGRAVE

Governing Council: *M. Branchesi*, E. Brocato, P. D'Avanzo, J. Hjorth, P. Jonker, E. Pian, S. Smartt (Chair), J. Sollerman, D. Steeghs, N. Tanvir. **Executive Committee**: A. Levan (Chair), M. Fraser, K. Maguire, *D. Malesani*, *O. S. Salafia*, *S. Vergani*.

A collaboration of ~ 200 ESO scientists (since O3)

Approved program during Oct 2018 – Mar 2020 fully covering O3. Time for EM counterparts **follow-up** on every useful **VLT** instrument + **ALMA HST** and **JWST**.

Follow-up strategy

Facilities in O4

The Electromagnetic Spectrum

Beyond O4

Future Facilities

The Electromagnetic Spectrum

Wavelength (meters)

	1					
Radio	CMB Microwave	Infrared	human sight Visible	Ultraviolet	X-ray	Gamma Ray
		SOXS	ESO-NTT			
		PI: S.	Campana			cherenkov telescope array
			Vera Rubin	Obs.		

Future Facilities

The Electromagnetic Spectrum

Wavelength (meters)

	,					
Radio	CMB Microwave	Infrared	human sight Visible	Ultraviolet	X-ray	Gamma Ray
		E	LT			(ct)
SKA						LLd
SQUARE KILOMETRE ARRAY		1-0	and the second s			cherenkov telescope array

Final Thoughts

- A new era for astrophysics, great discovery space, opportunities for early career astronomers

- INAF at the forefront (worldwide) since the dawn of this era

- Leadership gained (also) thanks to the GRB (BeppoSAX & Swift) and SNe heritage

- Future can be (very) bright, but also hard (see O3)

- Importance of multi-wavelength and theoretical expertises -> importance of collaborations (also international)

- Importance of flexible facilities, ToO, possibly dedicated

- ESO has (and will have) a very good ToO policy

 National facilities (at all scales) should be kept in operations, with a ToO policy (LBT and TNG have ToO, REM is robotic – great!
 very good that VST will have -> to be improved!)

- Vital to keep as long as possible high-energy satellites

- Great SVOM will arrive soon, it would be fantastic to have THESEUS and Athena in the '30s

A new era just begun, great opportunities for breakthrough discoveries, INAF should keep sustaining at all levels (funds, facilities, recruitment, collaborations) this field, to keep leadership (worldwide) role.

GRAWITA will benefit from a Large Grant-> vital to reach the O4 horizon

