

WP2: design of innovative algorithms, methodologies and codes towards exascale and beyond

Scope: This WP identifies innovative algorithms and methodologies upgrading their capability to exploit, and scale on, the exascale and post exascale architectures, reintegrating the resulting improved features in codes, workflows and pipelines. The energy impact will also be specifically considered. Leader: UniTS; Participants: INAF, SISSA, SNS, UniTS, UniCT, UniTo, UniTOV, INFN

- **T2.1**: Science cases definition, algorithms identification, parallelism level assessment and profiling
- **T2.2**: Algorithms co-design and methodologies to scale-up the capabilities of the algorithms and to find new innovative solutions
- **T2.3**: Design of **new architectural solutions** aimed at the exploitation of post-exascale infrastructures (GPUs, FPGAs, Vector accelerators, NVM, HBM, ARM)
- **T2.4**: Algorithms and methodologies integration into new big-data analysis applications

Partner	Task	Personale partecipante	PM A1	PM A2	PM A3	PM
UniTS	T2.1, T2.2, T2.4	Pierluigi Monaco, Stefano Borgani, Alexandro Saro, Matteo Costanzi, Francesco Longo		16,25	16,25	48,75
INAF	T2.1, T2.2, T2.3, T2.4	Giuliano Taffoni, Andrea Possenti, Aldo Bonomo 11		19	14	44
SISSA	T2.1, T2.3	Matteo Viel, Mario Spera	11	18	18	47
UniTO	T2.1, T2.2, T2.3, T2.4	Andrea Mignone, Susanna Terracini	14	8	8	30
UniCT	T2.1, T2.2, T2.4	Alessandro Lanzafame, Loreto Di Donato, Letizia Pumo	14,5	15,8	16,5	46,8
INFN	T2.1	Giovanni Signorelli, Massimiliano Lattanzi, Martina Gerbino	6,5	6,5	0	13
SNS	T2.1, T2.3, T2.4	Andrea Pallottini, Julien Bloino	17	16	16	49
RomaTOV	T2.1, T2.2, T2.3	Giuseppe Puglisi, Pasquale Mazzotta, Francesco Tombesi, Herve' Bourdin, Francesco Berrilli, Giancarlo De Gasperis, Giuseppe Bono	26	28	30	84

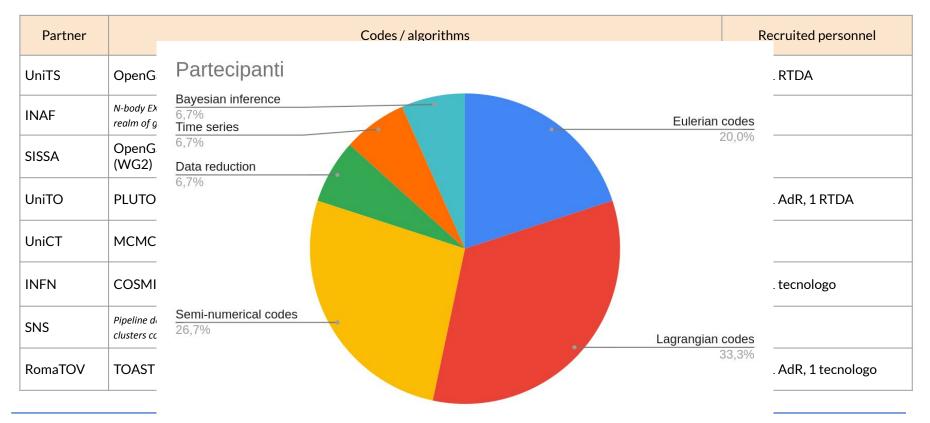
Partner	Task	Personale partecipante		PM A2	PM A3	PM
UniTS	T2.1, T2.2, T2.4	Pierluig Costan: Total	16.25	16,25	16,25	48,75
INAF	T2.1, T2.2, T2.3, T2.4	Total:	11	19	14	44
SISSA	T2.1, T2.3	362,6 PM	11	18	18	47
UniTO	T2.1, T2.2, T2.3, T2.4	Andrea Mignone, Susanna Terracini	14	8	8	30
UniCT	T2.1, T2.2, T2.4	Alessandro Lanzafame, Loreto Di Donato, Letizia Pumo	14,5	15,8	16,5	46,8
INFN	T2.1	Giovanni Signorelli, Massimiliano Lattanzi, Martina Gerbino	6,5	6,5	0	13
SNS	T2.1, T2.3, T2.4	Andrea Pallottini, Julien Bloino	17	16	16	49
RomaTOV	T2.1, T2.2, T2.3	Giuseppe Puglisi, Pasquale Mazzotta, Francesco Tombesi, Herve' Bourdin, Francesco Berrilli, Giancarlo De Gasperis, Giuseppe Bono	26	28	30	84

Partner	Task		Personale partecipante		PM A1	PM A2	PM A3	PM
UniTS	T2.1, T2.2, T2.4	Pierluig Costan:	Tatalı	o, Matteo	16.25	16,25	16,25	48,75
INAF	T2.1, T2.2, T2.3, T2.4	Giulian	Total:		11	19	14	44
SISSA	T2.1, T2.3	Matteo	362,6 PM		11	18	18	47
UniTO	T2.1, T2.2, T2.3, T2.4	Andrea Mig	gnone, Susanna Terracini		14	8	8	30
UniCT	T2.1, T2.2, T2.4	Alessan	no interest	Pumo	14,5	15,8	16,5	46,8
INFN	T2.1	Giovan		na Gerbino	6,5	6,5	0	13
SNS	T2.1, T2.3, T2.4	Andrea	partners		17	16	16	49
RomaTOV	T2.1, T2.2, T2.3	Giuseppe Herve' Bour Giuseppe B	rdin, Francesco Berrilli, Giancarlo De	Tombesi, Gasperis,	26	28	30	84

Proposed working groups

- 1. Eulerian Codes (WP1, WP2)
- 2. Lagrangian Codes (WP1, WP2)
- 3. Time series (WP1, WP2, WP3)
- 4. Feature extraction (WP3)
- 5. Bayesian inference(WP2, WP3)
- 6. Deep learning (WP1,WP3)
- 7. Visualization (WP3)
- 8. Data-reduction & imaging (WP1, WP2)
- 9. Semi-numerical codes (WP1, WP2)
- 10. Web-tools (WP4, WP5)
- 11. Platforms (WP4, WP5)
- 12. Data-model (WP1, WP2, WP3, WP4, WP5)

WP4. WP5

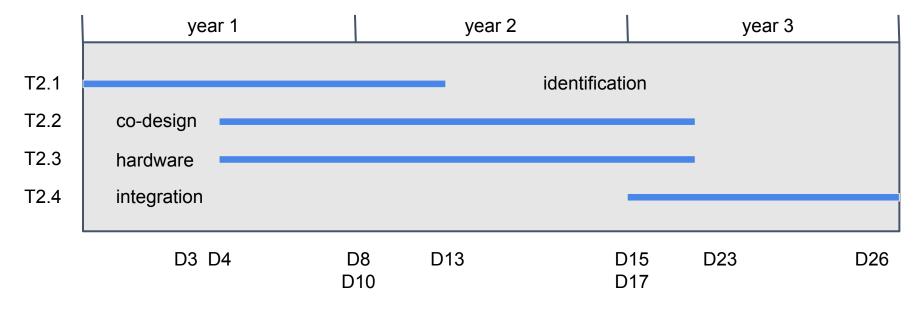

WP2: topics of interest (to be completed and homogeneized)

Partner	Codes / algorithms	Recruited personnel
UniTS	OpenGadget (WG2), Pinocchio (WG2)	1 PhD, 1 RTDA
INAF	N-body EXASCALE simulations; galaxy formation with reinforcement learning; direct-summation N-body simulations of stellar systems in the realm of galactic nuclei through advanced Exascale-ready codes; optimization of gravity solvers; [other scientific activities]	
SISSA	OpenGadget (WG2), GALAPY (WG5), SCAMPY (WG9), SEVN (WG9), TSUNAMI (WG2), ISTEDDAS (WG2)	2 AdR
UniTO	PLUTO (WG1), Symorb/Norbit (WG9), Dashboard (WG11)	1 PhD, 1 AdR, 1 RTDA
UniCT	MCMC inference algorithms (WG5)	1 PhD
INFN	COSMICA (WG9), PLUTO (WG1), data analysis for LiteBIRD (WG9), Boltzmann codes (WG9)	2 PhD, 1 tecnologo
SNS	Pipeline development for observational, experimental and synthetic data analysis; implementation of coding solutions for ARM-based clusters coupled with traditional HPC machines	
RomaTOV	TOAST (WG9), MHD code for planet formation (WG1), fitting multi-temporal and multi-frequency signals (WG3)	2 PhD, 1 AdR, 1 tecnologo

Spoke 3 Kick Off Meeting INAF Roma 27-28/10/2022 WP2 presentation

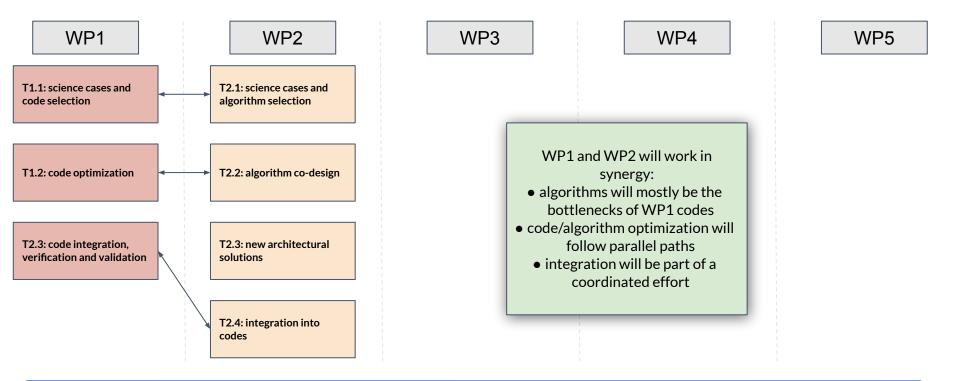
WP2: topics of interest (to be completed and homogeneized)

	PM in 3 years	Involvement	Topics (from Tabella Riassuntiva of WP partners efforts)
INAF	44,0	10 %	Co-desing, energy, innovative algorithms, parallel algorithms, numerical simulations
INFN	13,0	15 %	Development of advanced models in CMB analysis pipeline with a focus on the inclusion of systematic effects due to cosmic rays
ROMATOV	84,0	29 %	Development of advanced models to be fitted to hyper-spectral and spatial resolution data. New algorithms for the identification and characterization of multi-temporal and multifrequency signals. Re-designing of simulation codes for CMB datasets to exploit GPUs.
UNITS	48,75	18 %	Co-design, including green-ization, of specific algorithms utilized in codes for cosmological simulations
UNITO	30	20 %	Sviluppo di metodi innovativi per l'implementazione di metodi ibridi fluido-particelle; Code validation / Verification; Sviluppo di nuove pipelines per la riduzione di ingenti quantità di dati osservativi (LOFAR, SKA, MUSE)
UNICT	46,8	42 %	Optimization of MCMC inference techniques on parallel/HPC architectures to include the spectroscopic inference of stellar parameters in large large astrophysical surveys; innovative approaches to data analysis and visualizations.
SNS	49	35 %	Pipeline development for observational, experimental and synthetic data analysis; implementation of coding solutions for ARM-based clusters coupled with traditional HPC machines
SISSA	47	35 %	N-body EXASCALE simulations; galaxy formation with reinforcement learning; direct-summation N-body simulations of stellar systems in the realm of galactic nuclei through advanced Exascale-ready codes; optimization of gravity solvers; [other scientific activities]
TOTAL	362,6		



WP2: deliverables (as in the proposal)

#ID	Deliverable name	Short description	Туре	Dissem. level	Delivery date (months)
D3	Spoke Project Plan (M4.2)	This will be written by all WPs	Report	Public	M4
D4	Activity status report (M6.1)	Science cases/requirements definition activity status report	Report	Public	M6
D8	Activity status report (M12.2)	Spoke's first year activity status report, written by all WPs	Report	Public	M12
D10	Requirements definition document (M12.4)	Spoke requirement definition document: science cases, algorithms and technologies definitions	Report	Public	M12, M16
D13	Requirements definition document (M12.4)	Algorithms identification, extraction and profiling definitions	Report	Public	M16
D15	Activity status report (M24.2)	Spoke's second year activity status report, written by all WPs	Report	Public	M24
D17	Performances (M24.4)	Report on performances, scaling and profiling of selected algorithms	Report	Public	M24
D23	Best analysis strategies (M28.2)	Report on best analysis strategies and profiling on HPC infrastructures for astrophysical cases	Report	Public	M28
D26	Final activity report (M36.3)	Spoke's final activity status report, written by all WPs	Report	Public	M36



WP2: timeline (as in the proposal)

Note: deliverables are very generic, we need to identify a number of flagship algorithms to deliver, algorithm selection must take into account project feasibility, for the given resources

WP1 WP2 WP3 WP4 WP5 T2.1: science cases and T3.1: requirements from algorithm selection **AAA** community T3.2: innovative machine T2.2: algorithm co-design learning T2.3: new architectural solutions WP3 may propose algorithms to optimise to WP2 T2.4: integration into codes

WP1

WP2

WP3

WP4

WP5

T4.1 Data management, Standardization and Interoperability

T2.2: algorithm co-design

T2.3: new architectural solutions

WP2 will provide use cases to build the data model, following WP4 recommendations

T2.4: integration into codes

Spoke 3 Kick Off Meeting INAF Roma 27-28/10/2022 WP2 presentation 14

WP4 WP1 WP2 WP3 WP5 T2.1: science cases and algorithm selection T4.2 Local and Distributed T2.2: algorithm co-design Long and Short term **Storage Optimization** T2.3: new architectural solutions Optimal storage strategies will be crucial for fast I/O T2.4: integration into codes

T2.4: integration into

codes

WP3 WP4 WP5 WP1 WP2 T2.1: science cases and T5.1 Collaborative software development algorithm selection T2.2: algorithm co-design Code deployment will T2.3: new architectural use the infrastructure solutions developed by WP5

WP2: risks

Risk	Likelihood	Severity
Our recruitment campaign fails	medium	high
We fail to produce and deliver improved codes/algorithms	high	low (with priorities)
We fail in creating synergies among WPs and WGs	medium	high
Project purpose and needs are not well defined	high	high
Software/code/services clash with the chosen architecture	high	high
We replicate the same effort in different Spokes	high	medium

WP2 Conclusions: what we need to do

WP1 and WP2 should be considered as parts of the same work:

- re-engineering a code for better performance is WP1,
- extreme optimization on a part of a code is WP2.

By december 2022 we need a draft workplan, that details WG structure, deliverables, milestones.

Deliverables **must be delivered** to have access to the next chunk of funds, so we need to be very careful in specifying what we are going to do. We need to prioritise our plans, e.g.:

- P1: algorithms that are critical to the success of the project,
- **P2**: algorithms that will plausibly be delivered,
- P3: algorithms that we wish to improve, but success depends on extra resources.

Task 2.1: with WP1 we are surveying our participants to decide which codes/algorithms we select for the three priority classes, splitting the work into WP1 and WP2 (also a-posteriori). We can use open calls to

People joining the effort will be divided into two classes:

- developers,
- consultants.

Once algorithms are selected, we need to provide **use cases to WP4** for the DMP, and receive recommendations for good practices of data management.

Thanks for the attention, pierluigi.monaco@inaf.it, cn1-spoke3-wp2@inaf.it