## Università di Torino

Participation to the

### Astrophysics & Cosmos Observations (Spoke 3)

[ National Centre for HPC, Big Data and Quantum Computing ]

A. Mignone (PO),

F. Massaro (PA), D. Gandolfi (PA), F. Pace (PO), G. Boffetta (PO), F. De Lillo (PA), Susanna Terracini (PO), V. Barutello (PA), A. Boscaggin (PA)



# Università di Torino (UniTo)

- UniTo is divided into 55 departments located in 13 faculties. Its academic structure involves also several schools, research centers and other facilities distributed over the whole city and neighbourhood.
- Ranked among the first 300 University worldwide and 5<sup>th</sup> in Italy (ARWU Shanghai);
- **UniTo** is ranked 3<sup>rd</sup> for research activities according to ANVUR.
- Academic staff: 527 PO, 975 PA, 650 Researchers (43 % women), Administrative staff: 1738 (tenure tracks);
- Students (2021/22): ~ 81.200 (enrolled 1,100 PhD);
- **Graduates** (2021): ~ 15,000 (~ 10.100 Bachelor, > 4,800 Master);
- **Employment rate** (within 1 year from degree): 54.8%
- International Networks (2021/22): 30 international double degree programs, over 430 academic cooperation agreement with universities and research institution from 79 countries;









## **Dipartiments Involved**

#### **Physics Department**

- Andrea Mignone (PO) Head: High-energy Astrophysics, plasma physics, numerical methods in magnetized fluids. Main developer of the PLUTO code for HPC of plasma dynamics.
- G. Boffetta (PO) Turbulent convection & geophysical flows, numerical computations of incompressible fluid dynamics.
- F. De Lillo (PA) Nonlinear waves & Turbulence, direct numerical simulations motility in fluid environments, mainly swimming of micro-organisms in chaotic and turbulent flows.
- **F. Massaro** (<u>PA</u>) Observational high-energy astrophysics, Radiative Process, multi-frequency data reduction, statistical method & machine learning.
- D. Gandolfi (<u>PA</u>) Exoplanet detection, space missions (CoRoT, Kepler, K2, CHEOPS, TESS), High-precision radial velocity follow-up of transiting planets;
- F. Pace (RTD) Linear and nonlinear evolution of cosmological models beyond LambdaCDM, N-body and ray-tracing simulations. Main developer of the modified Einstein-Boltzmann codes eos\_class and qsa\_class.

#### Math Department

- Susanna Terracini (PO) Head: Mathematical Analysis, Dynamical System theory, Celestial Mechanics, N-body problem, Reaction-Diffusion models, Calculus of Variations, Pattern Formation. ERC laureate 2013 (COMPACT advanced grant). Recipient of the 2020 Julusz Schauder medal for outstanding contributions in Nonlinear Analysis.
- Vivina Barutello (<u>PA</u>) Mathematical Analysis, Variational and Topological methods applied to problems of Celestial Mechanics and N-body problem, stability of trajectories.
- Alberto Boscaggin (PA) Mathematical Analysis, Hamiltonian systems, N-body systems, regularization of collisions, oscillatory solutions.
- Lorenzo Fatibene (PO) Mathematical Physics with skills in relativity theory cosmology, mathematical models in astrophysics, differential geometry.
- Mattia Bergomi PhD in Computer Sciences with skills in innovative Machine Learning techniques, Algebraic Topology, Cognitive Sciences



## Computational Plasma Astrophysics (→ A. Mignone)

- Computational modelling of astrophysical plasma or fluids using classical and relativistic numerical simulations.
- Development, maintenance and distribution of the PLUTO code for astrophysical plasma dynamics (<u>http://plutocode.ph.unito.it</u>);
- The PLUTO code ranks world-leading HPC excellence in a variety of astrophysical research fields and institutions around the world.
- The latest releases of the code (Dec 2018 and Nov 2020) have received ~ 1600 and ~ 1000 downloads, respectively.
- → Active contribution to WP1 & WP2





## Mathematics Dept (→ Susanna Terracini)

### A Mathematical Urban Plan for the Space

- Goal: understand global dynamics, (the set of all possible trajectories), their behaviour and their classification according to different applications to space sciences.
- Method: a new theoretical and computational mathematical framework enabling a global understanding of the evolution of high-dimensional complex dynamical systems in Celestial Mechanics and Astrodynamics.



- By a transformative combination of computational intelligence and advanced mathematics, we will perform a systematic reasoned search for the dynamical structures and their connections.
- ► Interdisciplinary approach by importing and transforming computer-assisted methods and computational intelligence techniques.
- $\rightarrow$  Active contribution to WP2 & WP3.



## The End

## Foreseen Activites within the Spoke

 Development of new generation of computational algorithms and plasma codes, targeting exa-scale architecture and astrophysical and laboratory plasma [WP1 / WP2];

 Development of new class of visualization and data analysis tools with the ability to easily browse through complex 3D data sets [WP1];

Big Data: Expand current capabilities of the OCCAM-C3S computing facility at UniTo to improve i) data reduction / algorithms of massive observational data (e.g. LOFAR observations and - upcoming – SKA) (ii) data analysis of observations carried out with new optical instruments as MUSE and ERIS mounted at the Very Large Telescope; [WP3]

Machine Learning & Al techniques;

