The redshift evolution of extragalactic magnetic fields

26.01.2023 Bologna Valentin Pomakov, RWTH Aachen University Supervised by Shane O'Sullivan, Dublin City University Collaborators: Marcus Bruggen, Franco Vazza, Ettore Carretti and others https://arxiv.org/abs/2208.01336

Motivation

- Through its evolution, try to understand origin of cosmic MF
- X Dynamo X Primordial X Astrophysical X Combi X Other
- →Cosmological simulations already tell us there's a specific morphology, strength and evolution of the MF for each of these cases: Which one will data single out?

Our approach to this question:

- Faraday Rotation Measure (RM) method: probe along entire LoS, not just at places of particle acceleration (synchrotron radiation methods)
- MC simulations: middle-ground between (semi-)analytical approaches and cosmological simulations

The RM and its contributions

$$\mathrm{RM}_{[\mathrm{rad}\,\mathrm{m}^{-2}]} = 0.812 \int_{z_s}^{0} \frac{n_{\mathrm{e}\,[\mathrm{cm}^{-3}]} B_{\|\,[\mu\mathrm{G}]}}{(1+z)^2} \,\frac{\mathrm{d}l_{[\mathrm{pc}]}}{\mathrm{d}z} \,\mathrm{d}z$$

 $|\Delta RM| = GRORMRMARMARMARMIGRAMICAN$

Motivation for RM **pair** analysis: minimize GRM

Carretti+22 and 23: complementary work using single-source analysis

Observational Data

Raw data: (for more details see O'Sullivan et al. 2023, https://arxiv.org/abs/2301.07697v1)

• RM Grid catalogue derived from LoTSS DR2

RM pair data:

- Cross-match RM grid catalogue with itself to get pairs with a $\Delta\theta_{max} = 30$ arcmin
- Final sample:
- 345 RPs with redshift for both sources
- 168 PPs with host galaxy redshift (control sample)

Methodology of data analysis

- Main quantity of interest: $|\Delta RM| = |RM_1 RM_2|$.
- Use medians and a bootstrap uncertainty rather than mean and std

Observer

Redshift analysis:

- Evaluate dependence of random pairs' $|\Delta RM|$ in 10 bins in
- ▷ Z<</p>
- \succ Δ*z* = *z*_<−*z*_< → Focus on this here

 $Z_{<}$

Results from data analysis

 $|\Delta RM|_{RP} = (1.79 \pm 0.09) \text{ rad } m^{-2}$ $|\Delta RM|_{PP} = (0.70 \pm 0.08) \text{ rad } m^{-2}$

Remove local contributions by taking the *excess median* of RPs over PPs:

$$\begin{aligned} |\Delta RM|_{ex} &= (|\Delta RM|^2_{med, RPs} - |\Delta RM|^2_{med, PPs})^{1/2} \\ |\Delta RM|_{ex} &= (1.65 \pm 0.10) \operatorname{rad} m^{-2} \end{aligned}$$

ightarrow This is an estimate of the IGM contribution

6

Implications of a flat $|\Delta RM(z)|$

$$\mathrm{RM}_{[\mathrm{rad}\,\mathrm{m}^{-2}]} = 0.812 \int_{z_s}^{0} \frac{n_{\mathrm{e}\,[\mathrm{cm}^{-3}]} B_{\parallel\,[\mu\mathrm{G}]}}{(1+z)^2} \,\frac{\mathrm{d}l_{[\mathrm{pc}]}}{\mathrm{d}z} \,\mathrm{d}z$$

- For this to be flat with redshift, the mean **comoving** intergalactic field must evolve with redshift, ansatz power law: $B_0(z) = B_0(1 + z)^{-\gamma}$
- Test this in MC simulations:

Monte-Carlo simulations

- Sim **only IGM** contribution of **10 000** RPs
- The **ingredients** for simulating RM pairs
- z-values (draw from observed distribution)
- comoving n_e -values (draw from cosmo sims of Vazza+17)

$$\mathrm{RM}_{[\mathrm{rad}\,\mathrm{m}^{-2}]} = 0.812 \int_{z_s}^0 \frac{n_{\mathrm{e}\,[\mathrm{cm}^{-3}]} B_{\parallel\,[\mu\mathrm{G}]}}{(1+z)^2} \,\frac{\mathrm{d}l_{[\mathrm{pc}]}}{\mathrm{d}z} \,\mathrm{d}z$$

Parameter Explored values		Effect on RM				
B_0	{0.5, 1.0, 1.5, 2.0} nG	$RM \propto B_0$				
l_0	$\{0.1, 1, 10, 100\}$	$RM \propto l_0^{1/2}$				
γ	$\{1.5(0.5)5.0\}$	$\text{RM} \propto (1+z_s)^{1.5-\gamma}$ for $\gamma \neq 1.5$				
		$\text{RM} \propto \ln(1+z_s)$ for $\gamma = 1.5$				
dd	prim, dyn, astro					

- $B(z) = B_0(z)(n_e/n_{ref})^{2/3}$ and then evolve the comoving field as $B_0(z) = B_0(1+z)^{-\gamma}$
- Change MF orientation every coherence length $L_c = l_0 \Delta l$

Results from comparing sims and data

- Use a maximum-likelihood method, see table
- Overall preference for dyn, higher γ and higher B_0 and/or l_0
- Overall good fit:
 - Overall flat
 - 1 σ difference between sim and data's total median
- Preference for higher γ values, coupled with higher B_0 and/or l_0 , seeks to ensure flatness while also avoiding too great a suppression of the median
- \rightarrow Compensation effects between parameters \otimes

→Quote results as upper limits: $B_0 \leq (2.0 \pm 0.2)$ nG and $\gamma \leq 4.5 \pm 0.2$

Model: $ dd B_0/nG l_0 \gamma $	$ \Delta RM _{med} [rad m^{-2}]$	$\log P(d m)$
D1: dyn 2.0 0.1 4.5	1.52 ± 0.03	-7.86
P1: prim 1.0 10 4.5	1.62 ± 0.03	-8.03
P2: prim 0.5 100 2.5	1.42 ± 0.03	-8.35
D2: dyn 2.0 1 4.5	1.48 ± 0.03	-8.84
A1: astro 2.0 10 3.0	1.57 ± 0.03	-8.93

Data: $|\Delta RM|_{ex} = (1.65 \pm 0.10) \text{ rad } m^{-2}$

Implications for magnetogenesis

- Use Vazza+17's cosmological sims again
- If we take our parameters to be at the upper limits we derived: $B_0 = 2.0$ nG and $\gamma = 4.5$
- At z=2 comoving MF value has dropped to 0.01 nG
- \rightarrow Uniform primordial seed fields disfavored

Table 6. Results for γ averaged over 100 LoSs for each magnetogenesis model in cosmological simulations (Vazza et al. 2017).

Model	γ
Primordial	-0.26 ± 0.02
Dynamo	4.18 ± 0.11
Astrophysical	2.32 ± 0.16

Summary and Lessons Learned

- $|\Delta RM|$ flat w.r.t. $z_{<}$ and Δz
- $|\Delta RM|_{ex} = (1.65 \pm 0.10)$ rad m^{-2} to remove local contributions as much as possible
- $B_0 \lesssim (2.0 \pm 0.2)$ nG and $\gamma \lesssim 4.5 \pm 0.2$
- Uniform primordial model as taken from cosmo sims. disfavored

Other models to consider:

- primordial with tangled, turbulent fields
- combined models, e.g. primordial + dynamo

Thank you!

The redshift evolution of intergalactic magnetic fields https://arxiv.org/abs/2208.01336

Questions?

Results from data analysis

Table 2. Median $|\Delta RM|_{med}$ in units of $(rad m^{-2})$ for the entire sample of RPs and PPs before and after the foreground subtraction. The uncertainty is estimated by bootstrapping.

	RPs before	RPs after	PPs before	PPs after
$ \Delta RM _{med}$	2.17 ± 0.15	1.79 ± 0.09	0.68 ± 0.06	0.70 ± 0.08

Make sure local contributions are removed:

$$|\Delta RM|_{ex} = (|\Delta RM|^2_{med, RPs} - |\Delta RM|^2_{med, PPs})^{1/2}$$

 $|\Delta RM|_{ex} = (1.65 \pm 0.10) \text{ rad } m^{-2}$

Assessing agreement between sims and data: Maximum log-likelihood

We want to compare sims to the *excess* of RPs over PPs in the data:

- Compute $|\Delta RM|_{ex}$ bin-wise in the data for both z-spaces
- Divide both simulated z-spaces into the same 10 bins as data
- Compute $|\Delta RM|$ bin-wise in the simulations
- Build the bin-wise likelihood function

$$P_i(d|m) = \frac{1}{2\pi\sigma_{a_{\text{tot,i}}}\sigma_{b_{\text{tot,i}}}} \exp\left(-\frac{(a_{\text{d,i}} - a_{\text{m,i}})^2}{2\sigma_{a_{\text{tot,i}}}^2} - \frac{(b_{\text{d,i}} - b_{\text{m,i}})^2}{2\sigma_{b_{\text{tot,i}}}^2}\right),$$

- Build product of the $10x P_i$
- Take log and select model with the highest *logP*

Results from comparing sims and data

- Use a maximum-likelihood method
- Overall preference for dyn, higher γ and higher B_0 and/or l_0
- Overall good fit:
- Overall flat, BUT see low $z_{<}$ range

Spearman rank test for $|\Delta RM|$ with Δz and $z_{<}$, respectively.

- 1σ difference between sim and data's total median
- HOWEVER this difference is very systematic: Is it telling us something although it's not statistically significant?
- Could be related to the preference for higher γ values that tries to ensure flatness, coupled with higher B_0 and/or l_0 in order to avoid too great a suppression of the median ۰
- \rightarrow Compensation effects between parameters \otimes

Model: $ dd B_0/nG l_0 \gamma $	$ \Delta RM _{med} [rad m^{-2}]$	$\log P(d m)$	$\rho_{\Delta z}$	$p_{\Delta z}$	$\rho_{\rm Z_{<}}$	$p_{Z_{<}}$	MM
D1: dyn 2.0 0.1 4.5	1.52 ± 0.03	-7.86	0.012	0.22	0.11	$\ll 10^{-6}$	- <
P1: prim 1.0 10 4.5	1.62 ± 0.03	-8.03	0.022	0.03	0.05	$\ll 10^{-6}$	
P2: prim 0.5 100 2.5	1.42 ± 0.03	-8.35	0.0007	0.95	0.09	$\ll 10^{-6}$	
D2: dyn 2.0 1 4.5	1.48 ± 0.03	-8.84	0.021	0.03	0.10	$\ll 10^{-6}$	
A1: astro 2.0 10 3.0	1.57 ± 0.03	-8.93	0.046	$< 10^{-5}$	0.13	$\ll 10^{-6}$	

Data: $|\Delta RM|_{ex} = (1.65 \pm 0.10) \text{ rad } m^{-2}$

Caveats of model and methodology

Let's summarize:

- Our models can't provide perfect fit in terms of both flatness and the median
- Remedy: select models with potentially overestimated parameter values
- Why is this possible? → Compensatory effects between parameters
- \rightarrow Quote our results on parameters as upper limits
- → Small local contribution as in Goodlet & Kaiser 2005 (increase with z)
- Didn't we remove local contributions by considering $|\Delta RM|_{ex}$?
- Almost, BUT: local contrib of PPs (both sources at same redshift) are different than for RPs (the two sources have different redshift)
- ⇒A small local contribution is justified and it could alleviate both of our problems!

New results by Carretti+23

- Single-source approach, compare data directly to upgraded cosmological simulations, without MC simulations
- Cosmo sim upgrades: longer LoS, radiative cooling in all magnetogenesis scenarios, explore 5 magnetogenesis scenarios
- Look at MF evolution in filaments only (not the entire IGM)
- Tangled primordial model agrees best with data, with a $\gamma_f = 2.15 \pm 0.5$ and a $B_{f,0}^{10} = 8 26$ nG in filaments
- Transforming from just filaments to the general IGM:

$$\gamma = 4.3 \pm 0.5$$
 and a $B_0 = 1.7 - 5.6$ nG, cf. our results

 $\gamma \lesssim 4.5 \pm 0.2$ and a $B_0 \lesssim 2.0 \ {\rm nG}$