Modelling primordial magnetic fields in galaxy clusters

PAOLA DOMÍNGUEZ FERNÁNDEZ

DIFA (U. BOLOGNA) & CENTER FOR ASTROPHYSICS (U. HARVARD)

COLLABORATORS: F. VAZZA, M. BRÜGGEN, G. BRUNETTI, S. MTCHEDLIDZE, A. BRANDENBURG, T. KAHNIASHVILLI, W. SCHMIDT, J. NIEMEYER, X. DU

Origin of magnetic fields

Primordial

Top-down scenario

Cosmic Magnetism in Voids and Filaments | 2023

Credit: Wise et al. 2019

Bottom-up scenario

Origin of magnetic fields

- EM cascades from blazars:
 - TeV Blazars should be observed as GeV halos
 - If a MF is present, e^+e^- get deflected (Lorentz) force) and no GeV halo is seen [Neronov & Vovk 2010]

Primordial magnetic fields

Effects on:

- CMB temperature and polarization anisotropies [Durrer et al.1998]
 - Matter power-spectrum affecting the evolution of stars & galaxies
 - Recombination (possible solution to Hubble tension)

[Jedamzik & Pogosian 2020]

Primordial Big Bang Nucleosynthesis

[Jedamzik et al.1998]

Reionization of the Universe

[Grasso & Rubinstein 1996]

Cosmic Magnetism in Voids and Filaments | 2023

[Wasserman et al.1998]

Types of primordial MFs

Inflationary

- Large coherence length scale [Sharma et al. 2017]
 - ~ $10^{-4} 0.1$ Mpc, ~ $10^{-13} 10^{-10}$ G
- Power spectrum (PS): power-law
- No inverse cascade (non-helical and helical) *

*depends if there is an homogeneous (imposed) MF (see Brandenburg et al. 2020)

Cosmic Magnetism in Voids and Filaments | 2023

Phase-transitional

- Coherence length predicted to be small
 - EW: 0.1 pc 10 kpc, $\sim 10^{-18} 10^{-11}$ G
 - QCD (optimistic scenario): ~10 kpc, ~ 10^{-13} G

[Vachaspati 2021; Tevzadze et al. 2020]

- Power spectrum (PS): power-law or a sharply peaked
- Expected inverse cascade (non-helical and helical)

Primordial MFs through structure formation

[Vazza et al. 2018]

Cosmic Magnetism in Voids and Filaments | 2023

• Matter dominated epoch:

Cosmological MHD numerical simulations

 Radiation dominated epoch: MHD numerical simulations

Primordial MFs through structure formation

[Vazza et al. 2018]

Cosmic Magnetism in Voids and Filaments 2023

 Evolution through structure formation • ENZO code (cosmological MHD)

[Bryan et al. 2014]

Initial magnetic field conditions:

- Uniform seed
- Non-uniform seed:
 - PENCIL code (MHD)

[PENCIL collab. 2021]

Phase-transitional

Inflationary

Inflationary

Cosmic Magnetism in Voids and Filaments 2023

Cosmic filaments

[Vazza et al. 2017]

RM studies rule out primordial uniform MF models

- should also explain MFs in clusters
- Is the seed field information really lost?

Primordial uniform seed

- Initial conditions: [Vazza et al. 2017]
 - z = 50, 0.1 nG (comoving)
 - Total volume: $(260 \,\mathrm{Mpc})^3$ (comoving) volume.

- Refinement region: $(25 \text{ Mpc})^3$
- 7 AMR levels, 4 kpc resolution
- No cooling or feedback

Primordial uniform seed

•Primordial seed AND small-scale dynamo amplification can reach $\sim \mu G$ values.

- Amplification of the order of 10^4 in the innermost regions.
- •Similar power-spectrum independent of the dynamical state (and evolution).

Initial magnetic conditions

14

Primordial non-uniform seeds

- Initial conditions:
 - z = 50, 1 nG (comoving)
 - $(80 \text{ Mpc})^3$ (comoving) volume.
 - Refinement region: $(20 \text{ Mpc})^3$
 - 6 AMR levels, 2.44 kpc resolution

• Relaxed cluster:

- $R_{vir} = 1.5 h^{-1} \text{Mpc}$
- $M(r \le R_{vir}) = 2.34 \cdot 10^{14} M_{\odot}$

accepted] g at ernández Mtchedlidz

Expectations from MHD only simulations

• The strength & structure of the seed field does not affect the growth rate & saturation level of the magnetic energy

Additional tangling of the mean field (Transient phase)

Primordial non-uniform seeds

Primordial non-uniform seeds

• In a relaxed cluster with:

- $R_{vir} = 1.5 h^{-1} \text{Mpc}$
- $M(r \le R_{vir}) = 2.34 \cdot 10^{14} M_{\odot}$

Inflationary

- Tangling of the large-scale field (larger magnetic amplification)
- Reaching $\sim \mu G$ values and ~ 300 kpc correlation length

Phasetransitional

•Reaching ~0.1 μG values at the center and ~200 kpc correlation length

Cosmic Magnetism in Voids and Filaments | 2023

The correlation length decreases during merger events

amplification) ength

accepted -Fernánde Domínguez Mtchedlidze

Fair comparison to small-scale dynamo theory?

MAGNETIC AMPLIFICATION DOES NOT ONLY DEPEND ON TURBULENCE IN GALAXY CLUSTERS

MAGNETIC AMPLIFICATION

HINT ON MAGNETIC SPECTRAL DIFFERENCES

Summary

Primordial MFs can explain the observed magnetization in galaxy clusters (simulations)

- Mergers affect the small-scale dynamo amplification.
- Kazantsev theory.
- Is the seed field memory really lost?
- Inflationary

Ι.

Ι.

 $\sim \mu$ G VALUES, LARGER λ_B , MORE MAGNETIC POWER AT $\gtrsim 0.5 h^{-1} \mathrm{cMpc}$

Phase-transitional

 $\sim 0.1 \mu$ g values, smaller λ_{R}

Future studies (also with helicity) needed!

Cosmic Magnetism in Voids and Filaments | 2023

• Cosmological MHD simulations do not exhibit a small-scale dynamo that can be compared one-to-one to the

