DETECTABILITY OF INTERGALACTIC MAGNETIC FIELD SIGNATURES FROM GAMMA-RAY BURTS WITH IACTS

Davide Miceli, Paolo Da Vela, Elisa Prandini

Cosmic Magnetism in Voids and Filaments, 25/01/2023

Probing Intergalactic Magnetic Field (IGMF) in the GeV range

IGMF can generate an <u>extended</u> and <u>time-delayed</u> emission at GeV energies due to magnetic field deflection + CMB reprocessing

Adapted from Vachaspati et al. 2020

Imaging Atmospheric Cherenkov Telescopes (IACTs)

Credit: Robert Wagner/MAGIC Collaboration

Credit: VERITAS

Credit: Klepser, DESY, H.E.S.S. collaboration

Credit: Tomohiro Inada, CTAO

Imaging Atmospheric Cherenkov Telescopes (IACTs)

Credit: Gabriel Pérez Diaz, IAC / Marc-André Besel, CTAO

Imaging Atmospheric Cherenkov Telescopes (IACTs)

IGMF studies

Blazars

Features:

- Persistent sources of TeV radiation
- Subclass with Hard-TeV spectrum
- Population of ~ 80 sources as TeV

emitters

Drawbacks:

- Source temporal (min-yrs) and spectral variability
- Pollution by primary GeV emission
- Unknown duty cycle

IGMF studies

GRBs

Features:

- Cosmological sources
- Bright transient events (L up to ~ 10⁵³ erg s⁻¹)

Advantages:

- -Pollution-by-primary-GeV-emission
- -Unknown-duty-cycle

Drawbacks:

- Limited number of events (4 events at TeV + 2 hints of TeV emission)
- Source spectrum and spectral variability

Gamma-Ray Bursts (GRBs)

Gamma-Ray Bursts (GRBs)

chart GPP		GRBs at Very High Energy				
	T_{90} s	$E_{\gamma,iso} \\ \mathbf{erg}$	Z	T _{delay} s	E _{range} TeV	IACT (sign.)
Short 160821B	0.48	$1.2 imes 10^{49}$	0.162	24	0.5-5	MAGIC (3.1σ)
Long 180720B	48.9	$6.0 imes10^{53}$	0.654	3.64×10^{4}	0.1-0.44	H.E.S.S. (5.3 σ)
Long 190114C	362	$2.5 imes 10^{53}$	0.424	57	0.3-1	MAGIC (> 50σ)
Long 190829A	58.2	$2.0 imes10^{50}$	0.079	1.55×10^{4}	0.18-3.3	H.E.S.S. (21.7 σ)
Long 201015A	9.78	$1.1 imes10^{50}$	0.42	33	0.14	MAGIC (3.5σ)
Long 201216C	48	$4.7 imes10^{53}$	1.1	56	0.1	MAGIC (6.0 σ)

Miceli & Nava, 2022

Iong OND

Gamma-Ray Bursts (GRBs)

GRB080319B (Racusin et al., 2008)

GRBI90114C

- Long GRB
- E_{y,iso} ~ 2.5 x 10⁵³ erg
 z = 0.42
- TeV detection info (MAGIC):
- T_{delay} ~ 57 s
- > 50 σ in 20 minutes
- detection up to 40 min
- 0.3 I TeV energy range

Multi-wavelength light curve

GRBI90114C

- Long GRB
- E_{γ,iso} ~ 2.5 x 10⁵³ erg
 z = 0.42
- TeV detection info (MAGIC):
- T_{delay} ~ 57 s
- > 50 σ in 20 minutes
- detection up to 40 min
- 0.3 I TeV energy range

GRBI90114C: Simulated echo emission

Purpose: calculate the simulated secondary cascade with **CRPropa**

- Details of CRPropa (Source; Magnetic Field; Observer)
- Assumptions:
 - Starting time for photon cascade counting: 2400 s
 - Source time activity: MAGIC detection interval (40 min)
 - No spectral variability with time (consistent with MAGIC results)
 - Median flux emitted in afterglow phase

GRBI90114C: Simulated echo emission

Estimate the median flux emitted in the afterglow phase in TeV range

• Afterglow starting phase $\rightarrow \sim 6 \text{ s} (\frac{\text{Ravasio et al. 2019}}{\text{Ravasio et al. 2019}})$

MAGIC LC fit in [0.3 – 1] TeV from 68 s up to 2400 s

Flux extrapolated from 6 s up to 2400 s

GRBI90114C: Simulated echo emission

Estimate the median flux emitted in the afterglow phase in TeV range

Assumed photon (EBL-deabsorbed) spectrum in [0.2 - 10] TeV:

- Power-law spectrum
 too optimistic assumption
- Log-parabola spectrum
 consistent with data modeling and theoretical expectations

GRBI90114C (z = 0.42)

- Primary GRB emission
- Secondary emission
- Observational time: 3
 hours starting from 2400
 s after trigger burst
- MAGIC and CTA sensitivity for transients from <u>Fioretti et al, 2019</u>

GRBI90114C (z = 0.42)

- Primary GRB emission
- Secondary emission
- Observational time: 9
 hours starting from 2400
 s after trigger burst
- MAGIC and CTA sensitivity for transients from Fioretti et al, 2019

GRBI90114C-like with higher redhshift (z = 1.0)

- Primary GRB emission
- Secondary emission
- Observational time: 6
 hours starting from 2400
 s after trigger burst
- MAGIC and CTA sensitivity for transients from Fioretti et al, 2019

GRBI90114C-like with lower redhshift (z = 0.2)

- Primary GRB emission
- Secondary emission
- Observational time: 3 hours starting from 2400 s after trigger burst
- MAGIC and CTA sensitivity for transients from Fioretti et al, 2019

GRB221009A (z = 0.151)

Current and future Extended Air Shower (EAS) can provide useful results

Conclusions

- Gamma-Ray Bursts are promising sources for IGMF studies
- Current IACTs can probe the "weakest" IGMFs <u>extending observational time</u> (3-6-9 h) in follow-up nearby and bright GRBs
- Impact of intrinsic source features is greater than secondary reprocessing due to distance

 Future facilities (CTA, SWGO) will play a key role (IGMF studies from GRBs as a key project)

BACKUP SLIDES

Probing IGMF in the GeV range

IGMF can generate an <u>extended</u> and <u>time-delayed</u> emission at GeV energies due to magnetic field deflection + CMB reprocessing

IGMF: Extended emission

IGMF: Extended emission

Deflection angle (δ) and angular extention (Θ_{ext}) are sensitive to magnetic field B, energy of reprocessed photons (E_y) and source distance (z)

IGMF: Time-delayed emission

From Da Vela's talk at TeVPA 2022