

Prospects on the content of cosmic voids with the Cherenkov Telescope Array

Jonathan BITEAU, on behalf of the CTA Consortium

Université Paris-Saclay, IJCLab

J. Biteau – Cosmic Magnetism @ DAMSLab – 2023.01.25

Contents

Cosmic voids and y-ray astronomy

Fields that can be probed and intrinsic limitations

The Cherenkov Telescope Array

From current-generation observatories to CTA

Constraints on cosmic fields

Intergalactic magnetic and photon fields with CTA

The advent of CTA

Timeline – CTA is (almost) now!

Cosmic voids & y-ray astronomy Fields that can be probed and intrinsic limitations

J. Biteau – Cosmic Magnetism @ DAMSLab – 2023.01.25

Y-ray propagation on cosmic scales

Y-ray propagation on cosmic scales

Limitations:

Zeeman

 10^{-9}

 10^{-5}

 L_B [Mpc]

 10^{-1}

effect

 10^{-3}

 10^{-5}

 10^{-7} -

 10^{-9}

 10^{-11}

 10^{-13} -

 10^{-15} -

 10^{-17} -

 10^{-19}

- Inverse Compton may not be the only cooling mechanism
- Wide range of B-fields to test

\rightarrow to overcome in the next yrs

Hubble horizon

 10^{3}

Faradav

rotation

The Cherenkov Telescope Array

From current-generation observatories to CTA

See CTA's webpage and the book Science with CTA

J. Biteau – Cosmic Magnetism @ DAMSLab – 2023.01.25

Major TeV observatories

Evolution the TeV sky

1989 - early 2000s

Childhood of gamma-ray astronomy, triggered by Whipple \rightarrow Crab Nebula + ~5 AGNs

2003-Now

Growth triggered by H.E.S.S./MAGIC (2003/04), VERITAS (2007), HAWC (2015), LHAASO (2019) >250 sources! A much-larger-than-expected variety of objects! E.g. for the extragalactic sky

Why do we build CTA

HEGRA ('90s)

MAGIC ('00s,'10s)

2 sites to access the entire sky

Sensitivity: 5-10× better than current E-range: 0.02-300TeV (vs 0.1-10TeV) ΔE/E <10% (vs <17%) >0.2TeV $\Delta \theta < 3'$ at E > 1 TeV (vs 5')

CTA-N ('20s-'40s) CTA North

Optimized layout (α configuration) **Cta**

Science-based optimization

North: extragalactic oriented (high-E/z absorption)

Shower-based optimization

Comparative performance

Users of the CTA observatory

The CTA Observatory

First true open observatory for very-high-energy gamma-ray astronomy

Time distribution (first 10 years)

~40% Key Science Projects (CTA Consortium) ~60% remaining: User time (larger fraction), Host-country time (smaller fraction)

Annual Guest Observer proposals with P.I. from contributing countries or non-contributing (small fraction)

Open data

High-level data accessible after a one-year proprietary period

High-level product Users

Archival Data Users Open Time Users

CTA Consortium Key Science Projects

Core Science and Observations

The CTA Consortium

25 countries, 150 institutes: 1500 members (~500 FTE) as of June 2021 Definition of the component and of the Key Science Projects Release of catalogs, maps, likelihood/posterior profiles...

Cota Directory Science with the Cherenkov Telescope Array The CTA Consortium

CTA Consortium Key Science Projects

nttps:/

/doi.org/10.1142

10986

Constraints on cosmic fields

Intergalactic magnetic and photon fields with CTA

J. Biteau – Cosmic Magnetism @ DAMSLab – 2023.01.25

Cosmic y-ray absorption

First model-dependent detections

Reconstruct normalization of EBL density, α , wrt models of galaxy-counts: $\Phi_{obs} = e^{-\alpha \tau(E_0, z_0)} \Phi_{intr}$ Imprint now detected at > 11 σ , compatible galaxy counts. Current precision on α : 20-30%.

Simulations for CTA-N and CTA-S

Observation time anticipated as part the AGN Key Science Project

Selection of ~50 sources detectable at high optical depths \rightarrow 830h i.e. ~10 months full-time from one site Quiescent / flaring states from current-generation GeV-TeV observations, including high-*E* cutoff

Measurement as a function of z

Cosmic y-ray cascades

Simulations for CTA

Single-source test

1ES 0229+200 (z = 0.14) 50h of observation Cascade from 10 Myr activity

3σ sensitivity to extended secondary component

Sufficient reach to jointly probe surviving primaries and secondaries

Single-source discovery power

Single-source test

1ES 0229+200 (z = 0.14) 50h of observation Cascade from 10 Myr activity

Detectability for different coherence lengths (unknown) and jet orientation (unknown)

Probed parameter space

Status and expectations

CTAC '21

The advent of CTA Timeline – CTA is (almost) now!

J. Biteau – Cosmic Magnetism @ DAMSLab – 2023.01.25

Cameras & telescopes

LST-1 on site

LST-2/4 in prod

1st full MST cameras

LST-1 commissioning

LST-1 inauguration on Oct. '18

Commissioning, science verification

Crab Nebula detection in Nov. '19

AGN Detections

Mrk 501, Mrk 421, 1ES 1959+650, 1ES 0647+250 and PG 1553+113

Crab Pulsar detection in June '20

López-Coto for CTA LST '21

Until...

Sep. to Dec. 2021

No permanent damage on LST1

LST back on track since early 2022

First scientific observations?

Until we have both CTA-S and CTA-N

Step-by-step ramp up with the 1st telescopes on CTA-N!

J. Biteau – Cosmic Magnetism @ DAMSLab – 2023.01.25

The cosmic optical and infrared backgrounds

COB & CIB: the Zodi contaminant

The optical controversy from New Horizons

COB & CIB: integrated galaxy light

Models of the COB and CIB: prior to y-ray measurements

Three main categories of models:

Empirical models

from observed luminosity functions of galactic populations, extrapolate them to high-*z*

Phenomenological models from initial mass function (distribution of stellar mass at 0 age), cosmic star formation history and stellar population synthesis models

Semi-analytical models

from cosmological simulations with simplified equations wrt N-body sims, including sub-grid recipes for baryonic feedback

Models of the COB and CIB: post y-ray measurements

Three main categories of models:

Empirical models

from observed luminosity functions of galactic populations, extrapolate them to high-z

Phenomenological models from initial mass function (distribution of stellar mass at 0 age), cosmic star formation history and stellar population synthesis models

Semi-analytical models

from cosmological simulations with simplified equations wrt N-body sims, including sub-grid recipes for baryonic feedback

Models of the COB and CIB: most recent

Three main categories of models:

Empirical models

from observed luminosity functions of galactic populations, extrapolate them to high-*z*

Phenomenological models from initial mass function (distribution of stellar mass at 0 age), cosmic star formation history and stellar population synthesis models

Semi-analytical models

from cosmological simulations with simplified equations wrt N-body sims, including sub-grid recipes for baryonic feedback

Models of the COB and CIB: possibly best of each type

Three main categories of models:

Empirical models

from observed luminosity functions of galactic populations, extrapolate them to high-*z*

- Phenomenological models from initial mass function (distribution of stellar mass at 0 age), cosmic star formation history and stellar population synthesis models
- Semi-analytical models

from cosmological simulations with simplified equations wrt N-body sims, including sub-grid recipes for baryonic feedback

