universität innsbruck

Intergalactic magnetic field studies by means of γ -ray emission from GRB 190114C

P. Da Vela, G. Martí-Devesa*, F. Saturni, P. Veres, A. Stamerra, and F. Longo, on behalf of the *Fermi*-LAT Collaboration *Speaker Cosmic Magnetism in Voids & Filaments – 25.01.2023

Probing the "weakest" IGMF through pair echoes from GRBs

Since the pairs are deviated, the cascade emission is also delayed:

$$\begin{split} \cdot \lambda_B >> D_E \\ T_{delay} &\approx 7 \times 10^5 \left(1 - \tau^{-1}\right) (1 + z)^{-5} \left[\frac{E}{0.1 \text{ TeV}}\right]^{-5/2} \left[\frac{B}{10^{-18} \text{ G}}\right]^2 \text{s} \\ \cdot \lambda_B << D_E \\ T_{delay} &\approx 10^4 \left(1 - \tau^{-1}\right) (1 + z)^{-2} \left[\frac{E}{0.1 \text{ TeV}}\right]^{-2} \left[\frac{B}{10^{-18} \text{ G}}\right]^2 \left[\frac{\lambda_{B_0}}{1 \text{ kpc}}\right] \text{s} \end{split}$$

Hence the cascade flux is strongly diluted:

$$F_{
m delay} \sim rac{T}{T + T_{
m delay}} F_0$$

We want to constrain the IGMF with no steady GeV emission to handle

Previous works on GRB 190114C are in disagreement: different, but not physically motivated SEDs assumed

GRB 190114C and analysis

VHE SED: Synchrotron Self-Compton model

We use the SSC VHE model of the emission seen by MAGIC above 200 GeV

$$\frac{dN}{dE} \propto \left(\frac{E}{0.4 \text{ TeV}}\right)^{-2.5 - 0.2 \cdot \log(E/0.4 \text{ TeV})}$$

universität innsbruck

MAGIC Collaboration et al. 2019

VHE light curve: the afterglow

The flux is extrapolated to $T_0 + 6$ s, seemingly the beginning of the afterglow

The analysis is started at $T_0 + 2 \cdot 10^4$ s, when the last photon associated with the GRB itself in the GeV band is detected

MAGIC Collaboration et al. 2019

VHE light curve: the afterglow

The flux is extrapolated to $T_0 + 6$ s, seemingly the beginning of the afterglow

The analysis is started at $T_0 + 2 \cdot 10^4$ s, when the last photon associated with the GRB itself in the GeV band is detected

MAGIC Collaboration et al. 2019

VHE light curve: the afterglow

The flux is extrapolated to $T_0 + 6$ s, seemingly the beginning of the afterglow

The analysis is started at $T_0 + 2 \cdot 10^4$ s, when the last photon associated with the GRB itself in the GeV band is detected

MAGIC Collaboration et al. 2019

LAT analysis

Above 1 GeV: optimized to reduce Earth-limb contamination, maximize exposure

We tested different integration times: 0.5, 1, 3, 6, 9, 15, 24 months. $TS \sim 0$ in all cases. No cascade detection

PKS 0346-27 flaring: additional background source

The blazar PKS 0346-27 has been flaring intermittently during the whole observation window

Spectral shape not properly accounted in the 4FGL model: need for power law with exponential cut-off

Martí-Devesa . IGMF by GRB 190114C . Cosmic Magnetism in Voids & Filaments 8/15

PKS 0346-27 flaring: additional background source

4

Significance [σ]

0

-2

The blazar PKS 0346-27 has been flaring intermittently during the whole observation window

Spectral shape not properly accounted in the 4FGL model: need for power law with exponential cut-off

CRPropa simulations

CRPropa settings

Source:

- Point-like
- Redshift: z = 0.42
- Spectrum: Logparabola up to different maximum energies
- Minimum energy injected: 0.05 GeV

Magnetic field:

- Turbulent magnetic field with a Kolmogorov spectrum and different $B_{\rm rms}$
- Correlation length $\lambda_B \gtrsim 1$ Mpc

Framework:

- Sphere of radius 1.6 Gpc with the source at the centre
- Temporal resolution: tracing particles with accuracy of \sim 3 hours

Da Vela et al., submitted to PRD

Da Vela et al., submitted to PRD

Da Vela et al., submitted to PRD

Da Vela et al., submitted to PRD

Da Vela et al., submitted to PRD

Da Vela et al., submitted to PRD

Light curve: Simulation vs Fermi observing strategy

Da Vela et al., submitted to PRD

Martí-Devesa . IGMF by GRB 190114C . Cosmic Magnetism in Voids & Filaments 12/15

Light curve: Simulation vs Fermi observing strategy

Da Vela et al., submitted to PRD

What about other GRBs?

• GRB 190829A: $T_{\text{activity}} = 51$ hours, z = 0.0785, VHE intrinsic spectrum power law $\Gamma = -2$. Assuming an exponential cut-off at 4 TeV (the maximum measured energy by H.E.S.S.), B = 10 - 20 G and 1 month of observation time the cascade SED is more than 4 orders of magnitude lower than the *Fermi*-LAT upper limit

• GRB 221009A: Promising, but missing information to reconstruct an SSC spectrum. VHE T_{activity} unknown, as well as the multi-wavelength SED.

Summary

- The presence of delayed GeV emission after a strong transient should be the signature of a non-zero magnetic field in the IGM
- We simulate the cascade produced by GRB 190114C with CRPropa3 assuming a physically motivated spectral model
- We search for the delayed emission using *Fermi*-LAT between 15 days and 24 months
- Despite its detection at TeV energies with MAGIC, GRB 190114C cannot be used to constrain the IGMF under reasonable assumptions

