Intergalactic Magnetic Field Constraints with VERITAS

Elisa Pueschel
Cosmic Magnetism in Voids and Filaments 2023.01.25

VERITAS Instrument

Electromagnetic Cascades

$\sim 10 \mathrm{TeV}$ initial photon $\rightarrow \sim 100 \mathrm{GeV}$ cascade photon

Plasma Beam Instabilities?

Energy loss of e+e-pairs due to plasma instabilities?
Relative cooling timescales determine cascade development
Following results assume inverse-Compton cooling to be dominant effect

Electromagnetic Cascades \& IGMF

high-energy

Magnetic field deflects e+e- pairs Path length to observer increases

IGMF Strength Regimes

e+e- pairs isotropize around source Angular extension $t_{\text {cascade }} \ggg t_{\text {primary }}$

$$
10^{-16} G<B<10^{-12} G
$$

"Magnetically b

Angular extension
$t_{\text {cascade }} \gg t_{\text {primary }}$

$$
B<10^{-16} G
$$

NB: Indicative values for VHE regime

No angular extension
Spectral or timing measurements

$$
\mathrm{t}_{\text {cascade }}>\mathrm{t}_{\text {primary }}
$$

Angular Profile for a Point Source

- Point source
- Angular profile $\rightarrow \theta^{2}$: angular distance between shower arrival direction and source's estimated location
- Background: flat in θ^{2}
- Signal: sharp peak at $\theta^{2}=0$ - Width \rightarrow point spread function (PSF)

Predicted Energy/Angular Profiles

- Semi-analytic 3D cascade simulation from T. Weisgarber
- Jet: Doppler factor $=10$, viewing angle 0°
- Minimal effect on spectrum above 100 GeV (arXiv:1210.2802)
- Magnetic field correlation length $\lambda=1 \mathrm{Mpc}$
- Typical choice in literature
- Results insensitive for $\lambda>$ inverse Compton cooling length ($\sim 100 \mathrm{kpc}$ for 1 TeV gamma rays)

Sources for IGMF Analysis

- Best sources = greatest cascade emission fraction
- Hard-spectrum blazars (assume 3FGL/3LAC ~ intrinsic index)
- Emission to multi-TeV energies - HBLs, esp. extreme-HBLs
- Check for presence of intrinsic cut-off \rightarrow 1ES 1218+304, 1ES 0229+200 are best sources!
- Range of redshifts
- $z=0.1-0.2$ is optimal
- Include near and far sources as cross-check/test redshift dependence in case of detection

Sources for IGMF Analysis

*Note: Mrk 421 and Mrk 501 highly variable in TeV
Remove flaring episodes: spectral variability + direct emission dominates

Maximizing Analysis Sensitivity

Maximize cascade fraction

Soft cut on image size (integrated charge)

Cut on maximum energy

Zenith angle observations $<30^{\circ}$

Energy range: $160 \mathrm{GeV}-1 \mathrm{TeV}$

Minimize angular resolution

Images in 3 or 4 telescopes

> Distance to shower core $$
215 \mathrm{~m}
$$

> Zenith angle observations $<30^{\circ}$

Simulating Point Sources

Compare source's angular profile against simulated point source

Energy correction

Simulations generated @ $\Gamma=2$
Weight simulation to match energy distribution of excess events

Zenith correction

Simulations generated @ $\mathrm{Ze}=20^{\circ}$

Derive PSF(Ze) from Crab Nebula data

Energy resolution

Propagate 20\% uncertainty

Shift simulated energy up and down

Simulating Point Sources: Control Sample

Good agreement between data and simulation on control sample (Mrk 421 high-state observations)

Red = simulations
Black $=$ data

Comparing Sources \& Simulated Sources

- Histogram residuals
- 2 histogram test
- Only one marginal p-value
- Does not account for zenith correction, systematic uncertainties

Restricted θ^{2} range to show detail Residuals calculated for $\theta^{2}<0.25$ deg 2

Source/Simulated Point Source Agreement

- Fit angular profiles
- Empirical function
- Check agreement of widths

No significant tension
No trend

Cascade Fraction Limits \rightarrow IGMF Limits

IGMF strength $B=1 \times 10^{-16}-1 \times 10^{-13} \mathrm{G}, 13$ values
Generate toys at different cascade fractions (f_{c})
from simulated
point source k Primary emission + Cascade emission

$$
\left(1-f_{c}\right) \text { PSF }+f_{c}(\text { PSF conv. w. cascade model })
$$

Set 95\% CL upper limits on f_{c}

Cascade Fraction Limits \rightarrow IGMF Limits

IGMF strength $B=1 \times 10^{-16}-1 \times 10^{-13} \mathrm{G}, 13$ values

Sensitivity to Assumptions on Spectra

- Consider impact on predicted f_{c} and f_{c} upper limit of
- EBL model
- From Gilmore 2012 (arXiv:1104.0671, fiducial model) \& Franceschini 2008 (arXiv:0805.1841)
- Intrinsic spectrum
- Assume spectral index $\Gamma=1.660$, based on Fermi measurement
- Does not account for possible variability on longer timescales
- Consider $\Gamma=[1.460,1.660,1.860]$
- Assume intrinsic spectrum described by exponentially cut-off power law
- No cutoff in VERITAS spectrum != no cutoff
- Highest energy spectral point @ 4 TeV
- $\mathrm{E}_{\mathrm{c}}=[5,10,20] \mathrm{TeV}$

IGMF Limits: Impact of Spectral Cutoff

Spectral cutoff at lower energy \rightarrow no constraints

IGMF Limits: Impact of Spectral Index

Softer spectral index \rightarrow no constraints

IGMF Limits: Impact of EBL Model

Larger region excluded for Gilmore 2012 fiducial model than for model of Franceschini 2008

$$
\begin{gathered}
5.5 \times 10^{-15}-7.4 \times 10^{-14} \mathrm{G} \text { (Gilmore } 2012 \text { fiducial) } \\
\text { versus } \\
9.1 \times 10^{-15}-5.6 \times 10^{-14} \mathrm{G} \text { (Franceschini } 2008 \text {) }
\end{gathered}
$$

IGMF Limits: Impact of Flux Variability

Predicted cascade fraction based on observed VERITAS flux Larger flux in the past \rightarrow larger cascade fraction in present day Smaller flux in the past \rightarrow smaller cascade fraction in present day

No constraints possible if average differential flux at 1 TeV <70\% observed value

Conclusions \& Outlook

- Conclusions
- VERITAS rules out band of IGMF strengths around $10-14 \mathrm{G}$
- Assuming correlation length $\lambda=1 \mathrm{Mpc}$
- Strong dependence on assumed intrinsic spectral properties
- Weak depedence on EBL model
- Results probe IGMF in voids
- First pair production >10 Mpc from source for 10 TeV gamma rays
- Outlook
- Updated information on spectral indices in Fermi range (4LAC) affect assumptions on intrinsic spectra
- 1ES 1218+304: $\Gamma=1.660 \pm 0.038 \rightarrow 1.71 \pm 0.02$
- 1ES 0229+200: $\Gamma=2.025 \pm 0.150 \rightarrow 1.78 \pm 0.11$
- Updated EBL models

Outlook

- More data
- ~ 60 hours $\rightarrow \sim 180$ hours on 1ES 1218+304 and 1ES 0229+200
- Majority taken after camera upgrade \rightarrow lower energy threshold
- ...although with significant flares in recent 1ES 1218+304 data

Outlook

- We know that spectral measurements are more powerful!
- e.g. Fermi-LAT + archival very-high-energy spectra (arXiv:1804.08035)
- The next step could be event-level fits with data from Fermi-LAT, VERITAS, H.E.S.S. and MAGIC with gammapy

Thanks!

doi:10.3847/1538-4357/835/2/288

Backup

Lightcurves

Lightcurves

