Intergalactic Magnetic Field Constraints with VERITAS

Elisa Pueschel Cosmic Magnetism in Voids and Filaments 2023.01.25

VERITAS Instrument

for faint & fast signal

Electromagnetic Cascades

~10 TeV initial photon \rightarrow ~100 GeV cascade photon

3

Energy loss of e+e- pairs due to plasma instabilities? Relative cooling timescales determine cascade development

Following results assume inverse-Compton cooling to be dominant effect

Electromagnetic Cascades & IGMF

Magnetic field **deflects** e+e- pairs Path length to observer **increases**

IGMF Strength Regimes

10⁻¹² G < B < 10⁻⁷ G "Pair halo"

e+e- pairs isotropize around source Angular extension t_{cascade} >>> t_{primary}

10⁻¹⁶ G < B < 10⁻¹² G "Magnetically broadened cascade" Angular extension

tcascade >> tprimary

B < 10⁻¹⁶ G No angular extension Spectral or timing measurements t_{cascade} > t_{primary} NB: Indicative values for VHE regime

01

Angular Profile for a Point Source

- Point source
 - Angular profile → θ²: angular distance between shower arrival direction and source's estimated location
 - Background: flat in θ^2
 - Signal: sharp peak at $\theta^2 = 0$
 - Width → point spread function (PSF)

Predicted Energy/Angular Profiles

- Semi-analytic 3D cascade simulation from T. Weisgarber
 - Jet: Doppler factor = 10, viewing angle 0°
 - Minimal effect on spectrum above 100 GeV (arXiv:1210.2802)
 - Magnetic field correlation length λ = 1 Mpc
 - Typical choice in literature
 - Results insensitive for λ > inverse Compton cooling length (~100 kpc for 1 TeV gamma rays)

Sources for IGMF Analysis

- Best sources = greatest cascade emission fraction
 - Hard-spectrum blazars (assume 3FGL/3LAC ~ intrinsic index)
 - Emission to multi-TeV energies HBLs, esp. extreme-HBLs
 - Check for presence of intrinsic cut-off → 1ES 1218+304, 1ES 0229+200 are best sources!
 - Range of redshifts
 - z = 0.1 0.2 is optimal
 - Include near and far sources as cross-check/test redshift dependence in case of detection

Sources for IGMF Analysis

*Note: Mrk 421 and Mrk 501 highly variable in TeV Remove flaring episodes: spectral variability + direct emission dominates

Maximizing Analysis Sensitivity

Simulating Point Sources

Compare source's angular profile against simulated point source	
Energy correction	Zenith correction
Simulations generated @ Γ=2	Simulations generated @ Ze=20°
distribution of excess events	Derive PSF(Ze) from Crab Nebula data
Energy resolution	Pointing uncertainty focal-plane camera
Propagate 20% uncertainty	Propagate 25" uncertainty
Shift simulated energy up and down	LEDS

sky camera

Simulating Point Sources: Control Sample

Good agreement between data and simulation on control sample (Mrk 421 high-state observations)

Comparing Sources & Simulated Sources

- Histogram residuals
 - 2 histogram test
 - Only one marginal p-value
 - Does not account for zenith correction, systematic uncertainties

Residuals calculated for $\theta^2 < 0.25 \text{ deg}^2$

Source/Simulated Point Source Agreement

- Fit angular profiles
 - Empirical function
 - Check agreement of widths

Cascade Fraction Limits \rightarrow **IGMF Limits**

IGMF strength B = $1 \times 10^{-16} - 1 \times 10^{-13}$ G, 13 values

Generate toys at different cascade fractions (f_c)

Cascade Fraction Limits \rightarrow **IGMF Limits**

IGMF strength B = $1 \times 10^{-16} - 1 \times 10^{-13}$ G, 13 values

Predicted cascade fraction must be sufficiently large & from statistical uncertainties sufficiently small to constrain fc point Minimum $f_c \sim 10\%$ Best constraints derived from 1ES 1218+304 sims cascade fraction 9.0 2.0 0.5 cascade fraction 0.45 0.4 $B = 1.00 \times 10^{-13} G$ $B = 3.16 \times 10^{-13} G$ 0.35 0.3 0.4 w_{sim} 68% containment 68% CL 0.25E w_{sim} 95% containment 0.3 95% CL 0.2E W_{data} W_{data} 0.15E 0.2 ----- 95% CL UL on f 95% CL UL on f_c 0.1F 0.1 0.05 0.045 0.05 0.055 0.06 0.065 0.07 0.08 0.085 0.045 0.05 0.055 0.06 0.065 0.07 0.08 0.085 0.075 0.075 width [deg] width [deg] DES 18

Sensitivity to Assumptions on Spectra

- Consider impact on predicted f_c and f_c upper limit of
 - EBL model
 - From Gilmore 2012 (arXiv:1104.0671, fiducial model) & Franceschini 2008 (arXiv:0805.1841)
 - Intrinsic spectrum
 - Assume spectral index Γ = 1.660, based on Fermi measurement
 - Does not account for possible variability on longer timescales
 - Consider Γ = [1.460, 1.660, 1.860]
 - Assume intrinsic spectrum described by exponentially cut-off power law
 - No cutoff in VERITAS spectrum != no cutoff
 - Highest energy spectral point @ 4 TeV
 - E_c = [5, 10, 20] TeV

IGMF Limits: Impact of Spectral Cutoff

Spectral cutoff at lower energy \rightarrow no constraints

IGMF Limits: Impact of Spectral Index

Softer spectral index \rightarrow no constraints

IGMF Limits: Impact of EBL Model

Larger region excluded for Gilmore 2012 fiducial model than for model of Franceschini 2008

> 5.5 x 10⁻¹⁵ - 7.4 x 10⁻¹⁴ G (Gilmore 2012 fiducial) versus 9.1 x 10⁻¹⁵ - 5.6 x 10⁻¹⁴ G (Franceschini 2008)

IGMF Limits: Impact of Flux Variability

Predicted cascade fraction based on observed VERITAS flux Larger flux in the past \rightarrow larger cascade fraction in present day Smaller flux in the past \rightarrow smaller cascade fraction in present day

No constraints possible if average differential flux at 1 TeV <70% observed value

Conclusions & Outlook

- Conclusions
 - VERITAS rules out band of IGMF strengths around 10⁻¹⁴ G
 - Assuming correlation length $\lambda = 1$ Mpc
 - Strong dependence on assumed intrinsic spectral properties
 - Weak depedence on EBL model
 - Results probe IGMF in voids
 - First pair production >10 Mpc from source for 10 TeV gamma rays
- Outlook
 - Updated information on spectral indices in Fermi range (4LAC) affect assumptions on intrinsic spectra
 - 1ES 1218+304: Γ = 1.660 ± 0.038 \rightarrow 1.71 ± 0.02
 - 1ES 0229+200: Γ = 2.025 \pm 0.150 \rightarrow 1.78 \pm 0.11
 - Updated EBL models

Outlook

- More data
 - ~60 hours \rightarrow ~180 hours on 1ES 1218+304 and 1ES 0229+200
 - Majority taken after camera upgrade \rightarrow lower energy threshold
 - ...although with significant flares in recent 1ES 1218+304 data

Outlook

- We know that spectral measurements are more powerful!
 - e.g. Fermi-LAT + archival very-high-energy spectra (arXiv:1804.08035)
- The next step could be event-level fits with data from Fermi-LAT, VERITAS, H.E.S.S. and MAGIC with gammapy

doi:10.3847/1538-4357/835/2/288

Lightcurves

Lightcurves

MJD