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Introduction



Introduction

• Blazars are AGN’s with a jet oriented along the line of sight.

• Some population of blazars (BL Lacs, in particular) shows an intense

emission γ-ray at TeV energies.

• Along with the primary TeV emission we expected to detect an

electromagnetic cascade in the GeV energy band due to the

attenuation in the IGM:
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The electromagnetic cascade is missing in the observations

• Some of the

observed blazars

arriving energy

fluxes in the GeV

band are under

the predicted

flux from the full

electromagnetic

cascade.

Neronov and Vovk

(2010)
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First possible explanation

• Deflection by the IGM magnetic fields.

Neronov and Vovk (2010) Taylor et al. (2011)
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1ES 0229+200 and IGMF

Taylor et al. (2011) 5



Second possible explanation

• Energy loss due to the Beam-plasma instabilities.

ωi ∼ 10−8Sec−1 Waves evolution−−−−−−−−−→ τloss ∼ 1012Sec << τIC ∼ 1014Sec

Broderick et al. (2012) Brejzman and Ryutov (1974)

6



1ES 0229+200 and Beam-plasma instability

Rafael Alves Batista talk

Alves Batista et al. (2019)
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The Question

• The plasma instability was calculated neglecting the IGM

magnetic fields. How the IGM magnetic fields will impact the

instability if it were there?

Artwork by Sandbox Studio, Chicago 8



IGMF effect on Pair-beam

electrostatic instability



Pair beam particles’ distribution function

• Primary VHE gamma-rays:

dN/dE ∼ E−1.8.

• Attenuation with the EBL at

z =0.2 from Finke et al

(2010).

• Pair spectrum at 50 Mpc

from the source:

fb(p, θ) = fb,p(p)fb,θ(p, θ),

fb,θ(p, θ) ≈ 1
π∆θs

exp
{
− θ2

∆θ2
s

}
,

∆θs ≈ mec
p

Vafin et al. (2018)
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Pair-Beam and IGM parameters

• Total pair-beam particles density at 50 Mpc: nb = 3× 10−22cm−3.

• Pair-beam mean Lorentz factor at 50 Mpc: γb = 4× 106.

• The IGM plasma density: ne = 10−7(1 + z)3cm−3.

• The IGM temperature: Te = 104 K.
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Linear growth rate of the electrostatic instability without IGMF

• The linear electrostatic

growth rate is the key

quantity of the plasma

instability (Brejzman

and Ryutov, 1974):

ωi (k) =ωp
2π2e2

k2

∫
d3p(

k · ∂f
∂p

)
δ(k · v − ωp).

• Maximum growth rate:

ω−1
i,max ≈ 108 Sec.

• Inverse Compton

scattering ∼ 1014 Sec.

Vafin et al. (2018)
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Weak IGMFs don’t change the beam-plasam linear analysis

• The intergalactic magnetic fields do not change the electrostatic

dispersion relation used to derive the linear growth rate.

Valid for IGM

for
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Weak Intergalactic Magnetic Fields effect on the Linear Growth

Rate of Electrostatic Instability

• The intergalactic magnetic fields cause stochastic deflections of the

electrons and positrons increasing the angular distribution function

of the pair beam as a Gaussian with the angler spread
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Weak IGMFs effect on the Linear Growth Rate ωi(∆θ(BIGM, λB))
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Strong reduction of the instability growth rate peak with IGMF
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Energy loss time of the beam-plasma instability

• Lower instability growth rate yields longer energy loss time of the

instability

τ−1
loss = 2δωi,max,

where δ = UES/Ubeam is the normalized wave energy density at the

equilibrium level.

• We consider the energy loss time in Vafin et al. (2018) that is about

one order of magnitude less than the IC energy loss time at redshift

0.2:
τloss
τIC

= 0.026 (1)

• The weak intergalactic magnetic field increases the energy loss time

of the beam-plasma instability suppressing it after a certain limit.
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Plasma instability limit compared to the time delay limit

Alawashra and Pohl (2022)
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Blazar-induced Pair beam plasma

instability current statue



Blazar-induced Pair beam plasma instability current statue

• We know that the linear growth rate is much faster than the

inverse Compton scattering.

Broderick et al. (2012); Vafin et al. (2018)

• Non-linear evolution of the instability which includes the

waves-particle scattering, wave-wave interaction and the background

inhomogeneity effect is still uncertain.

Schlickeiser et al. (2012); Miniati and Elyiv (2013); Vafin et al.

(2019)

• Feedback of the instability on the pair beam might include an

angular spread that suppress the instability linear growth rate as

well. No significant energy loss.

Perry and Lyubarsky (2021)
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Summary

• Weak intergalactic magnetic fields slow down the linear electrostatic

instability.

• This suppression is effective for fields with a factor of a thousand

weaker than those needed for magnetic deflection of the cascade

emission.

• Back-reaction of the instability on the pair beam may include

widening of the beam which also could suppress the instability (See

Perry and Lyubarsky (2021)).
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Linear analysis of the beam-plasma instability

• To describe the full system of the beam-plasma particles we need

Maxwell’s equation and Vlasov’s equation[
∂

∂t
+ v · ∂

∂r
+ qa

(
E+

v× B

c

)
· ∂

∂p

]
fa = 0 (2)

∇ · E = 4πρ (3)

∇ · B = 0 (4)

∇× E = −1

c

∂B

∂t
(5)

∇× B =
4π

c
J+

1

c

∂E

∂t
(6)

• Taking the average quantities plus a perturbation part fa = fa0 + δfa,

E = E0 + δE and B = B0 + δB.
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Blazar-induced pair beam electrostatic instability

• Neglect the external magnetic field and its perturbation

(B = B0 + δB = 0).

• Zero average electric field (E0 = 0).

• Take Fourier-Laplace transform of E fluctuations

δE = (2π)−4

∫ ∫
δEk,we

ikr−iωtd3kdω. (7)

• Using Maxwell-Vlasov equations leads to an equation link ω with k

called the dispersion relation.

• Solve for the imaginary part of ω(k) : ωi > 0 leads to an instability

growing ,ωi < 0 leads to decaying.

• For Blazar-induced pair beams the dominant modes are the

electrostatic (δE || k).
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