Primordial magnetic field signals in the 21 cm background

(Universidad de Salamanca)

Kerstin Kunze

Overview

- Modelling cosmological magnetic fields and effects
- Effects on the matter power spectrum
- Simulations: modified matter density field induced 21 cm line signal
- Observations
- Conclusions

Modelling cosmological magnetic fields

• Global isotropy rules out significant homogeneous magnetic field.

Modelling cosmological magnetic fields

- Origin of magnetic fields in the very early universe
- Stochastic magnetic field

where $\mathcal{P}_{M}(k, k_{m}, k_{L}) = A_{M} \left(\frac{k}{k_{L}}\right)^{n_{M}} W(k, k_{n})$ M = S, Apivot scale pivot scale window function $W(k,k_m) = \pi^{-\frac{3}{2}} k_m^{-3} e^{-(k/k_m)^2}$ damping scale upper cut-off

4

Effect on cosmological perturbations

effects of magnetic field survival

contribution to perturbations of energy density, anisotropic stress and to baryon velocity via Lorentz force Matter power spectrum LSS 21 cm line signal

Dissipation of cosmic I Where to

Damping of magnetic fields

O Before decoupling of photons

viscous damping

After decoupling of photons

decaying MHD turbulence

ambipolar diffusion

Dissipation of cosmic magnetic fields: How and

temperature

$$\dot{T}_e = -2\frac{\dot{a}}{a}T_e + \frac{x_e}{1+x_e}\frac{8\rho_\gamma\sigma_T}{3m_ec}\left(T_\gamma - T_e\right)$$

KK, Komatsu '15

spectrum and 21cm line signal

Total linear matter power spectrum: primordial curvature mod

 10^{0}

k [*h*/Mpc]

 10^{-2}

 10^{-4}

$$B_{3}=-2.90, B_{0}=3.00$$

 $B_{0}, B_{0}=3.00$
 $B_{3}=-2.70, B_{0}=3.00$
 $B_{0}=3.00$
 $B_{3}=-2.50, B_{0}=1.00$
 $B_{3}=-2.20, B_{0}=1.00$
 $B_{0}=1.00$
 $B_{0}=1.00$
 $B_{0}=1.00$

Figure 7. Linear matter power spectrum for three thermal neutrinos (TH) and three non-thermal neutrinos (NT, z_{eq}^{TH}) with distribution function (2.1) for different choices of the magnetic field parameters $(B_0[nG], n_B)$. Upper panel: the total linear matter power spectrum of the adiabatic mode (ad) and the compensated magnetic mode (CMF) is shown together with data points from BOSS DR9 Ly- α forrest [42] and SDSS [43]. The light dotted and dashed-dotted lines indicate the three neutrino thermal magnetic mode and the three neutrino non-thermal pure magnetic mode solutions, respectively. z_{eq}^{TH} denotes that the cosmological parameters have been adjusted so that the redshift of radiation-matter equality in the non-thermal model is the same as that in the non-thermal one (see details in the text). Lower panel: relative change of the linear matter power spectrum w.r.t. to the three thermal neutrino model (TH).

 10^{2}

KK 2021⁸

Effect of magnetic mode on the linear matter power spectrum and 21cm line signal

21 cm line signal: change in brightness temperature of CMB due to hyperfine transition in neutral hydrogen atoms along line of sight

Pritchard, Loeb (2012) 10

Simulations: matter density field

• Linear density matter field

B=0

B=5 nG, nB=-2.9

60

40

- 20

- 0

Simulations: matter density field

non linear density matter field

B=5 nG, nB=-1.5

z=32

B=5 nG, nB=-2.2

KK 2019

12

Simulations: matter density field

non linear density matter field

B=5 nG, nB=-2.9

z=32

KK 2019¹³

Simulations: 21cm line signal

B=5 nG, nB=-1.5

z=32

B=5 nG, nB=-2.2

KK 2019

Simulations: 21cm line signal

B=5 nG, nB=-2.9

z=32

KK 2019

15

Observations

• Average 21 cm line signal

KK 2019

Observations

• Average 21 cm line signal

Hydrogen Epoch of Reionization Array (HERA)

DeBoer et al. PASP 2017

Instrument	Collecting Area (m ²)	Foreground Avoidance	Foreground Modeling
PAPER	1,188	0.77σ	3.04 <i>o</i>
MWA	3,584	0.31σ	1.63σ
LOFAR NL Core	35,762	0.38σ	5.36σ
HERA-350	53,878	23.34σ	90.97σ
SKA1 Low Core	416,595	13.4σ	109.90σ

Table 1Predicted S/N of 21 cm Experiments for an EoR Model with 50% Ionization atz = 9.5, with 1080 hr Observation, Integrated over a Δz of 0.8

Table 2 HERA-350 Design Parameters and their Observational Consequences

Instrument Design Specification	Observational Performance	
Element Diameter: 14 m	Field of View: 9°	
Minimium Baseline: 14.6 m	Largest Scale: 728	
Maximum Core Baseline: 292 m	Core Synthesized Beam: 25'	
Maximum Outrigger Baseline: 876 m	Outrigger Synthesized Beam: 11'	
EOR Frequency Band: 100-200 MHz	Redshift Range: 6.1 < z < 13.2	
Extended Frequency Range: 50-250 MHz	Redshift Range: 4.7 < z < 27.4	
Frequency Resolution: 97.8 kHz	LoS Comoving Resolution: 1.7 Mpc (at $z = 8.5$)	
Survey Area: ~1440 deg ²	Comoving Survey Volume: ~150 Gpc ³	
T _{sys} : 100 + 120(v/150 MHz) ^{-2.55} K	Sensitivity after 100 hr: 50 µJy beam ⁻¹	

Note. Angular scales computed at 150 MHz

HERA currently observing in the band 100–200 MHz in the **Karoo Radio Quiet Preserve in South Africa** [DeBoer et al., 2017] at a latitude of $-30.73\circ$.

Estimated power spectrum

KK 2019

Estimated power spectrum

B=0

B=5 nG, nB=-2.9

Conclusions

21 cm line observations seem to provide a new interesting possibility to constrain primordial magnetic fields.

• 21cm line tomography might be used to constrain magnetic field evolution.