MAGNETOGENESIS IN THE FIRST GALAXIES

- THE IMPACT OF SEEDING ON GALAXY FORMATION -

ENRICO GARALDI (MPA)

Rüdiger Pakmor (MPA) Volker Springel (MPA) Garaldi, Pakmor, Springel 2021 MNRAS 502, 5726

For the purpose of this talk, I will crudely split the magnetic seeding processes into:

ENRICO GARALD

- "Cosmological" (anything at or before CMB time)
- Supernovae (and their remnants)
- Plasma physics (e.g. Biermann battery)
- Ionization fronts during Cosmic Reionization

ENRICO GARALDI

Photoionized electron are spatially segregated w.r.t. the proton because of mass difference, creating an E field ahead of the ionization front.

(Langer+03, Durrive & Langer+15)

ENRICO GARALDI

Photoionized electron are spatially segregated w.r.t. the proton because of mass difference, creating an E field ahead of the ionization front.

ENRICO GARALDI

Photoionized electron are spatially segregated w.r.t. the proton because of mass difference, creating an E field ahead of the ionization front.

 $|\vec{B} \sim \nabla \times \vec{E} = 0|$

ENRICO GARALDI

 $\vec{B} \sim \nabla \times \vec{E} \neq 0$

Photoionized electron are spatially segregated w.r.t. the proton because of mass difference, creating an E field ahead of the ionization front.

ENRICO GARALDI

Photoionized electron are spatially segregated w.r.t. the proton because of mass difference, creating an E field ahead of the ionization front.

When the ionization front is not isotropic, a B field is generated.

ENRICO GARALDI

For the purpose of this talk, I will crudely split the magnetic seeding processes into:

- "Cosmological" (anything at or before CMB time)
- Compact objects (e.g. Supernovae and their remnants)
- Plasma physics (e.g. Biermann battery)
- Ionization fronts during Cosmic Reionization (Durrive battery)

For all seeding mechanisms, **galactic processes** are of key importance for amplification and ejection of magnetic fields.

Testing seeding with state-of-the-art simulations

AREPO moving-mesh code + Moment-based RT + ideal MHD (with Powell 8-wave cleaning scheme)

+ the AURIGA galaxy formation model

- Stochastic star formation following KS relation
- Mass, energy, and metal return from SN and AGB stars
- Explicit tracking of 9 metal species (H, He, C, N, O, Ne, Mg, Si, Fe)
- Bimodal BH feedback: kinetic at low accretion rates thermal at high accretion rates
- Kinetic+thermal stellar winds

Credits: Auriga project

ENRICO GARALDI

Testing seeding with state-of-the-art simulations

AREPO moving-mesh code + Moment-based RT + ideal MHD (with Powell 8-wave cleaning scheme)

+ the AURIGA galaxy formation model

+ Variable seeding mechanism:

- Cosmological (10⁻¹⁴ G in ICs)
- SN injection ($E_{_B} = 0.01\% E_{_{SN}}$)
- Biermann battery
- Durrive battery

zoom-in and cosmological runs

Credits: Auriga project

ENRICO GARALDI

B fields on (sub-)galactic scales.

results from zoom-in simulations

Indistinguishable B fields by z~1

ENRICO GARALDI

Seed process sets saturation time, but not strength

Caveat: the saturation time depends on numerical resolution

Seed process sets saturation time, but not strength

Caveat: the saturation time depends on numerical resolution

Galaxy properties are unaffected by the seeding

- ENRICO GARALDI

Simulation	<i>R</i> _{200m}	M _{200m}	$R_{\rm hmr,*}$	$M_{\rm hmr,*}$
name	[kpc]	$[10^{10}{ m M}_{\odot}]$	[kpc]	$[10^{10} \mathrm{M_{\odot}}]$
AU-NONE	332.71	129.60	4.29	1.31
AU-SNE	343.67	133.05	5.21	1.45
AU-SNE-H	343.89	133.29	6.04	1.47
AU-DURR	342.56	131.76	4.79	1.43
AU-BIER	343.82	133.22	4.49	1.63
Au-cosmo	344.41	133.91	3.64	1.65

Take-away message here: all magnetic seeds can be amplified in galaxies to observed strength.

B fields on super-galactic scales.

results from cosmological simulations

Cosmological simulations

Same setup as the zoom-in for consistency.

Note: the AURIGA model has been built and tested only on MW-like galaxies.

<u>B fields as a function of halo mass</u>

13 $\log(|\mathbf{B}_{\mathrm{halo}}|)[\mu_{\mathrm{G}}]$ -1012 $\log(M_{
m gas}) \left[h^{-1} M_{\odot}
ight]$ -20 FB-DURR FB-SNE $\log(|\mathbf{B}_{\mathrm{halo}}|)$ [$\mu\mathrm{G}$] 10zoom-in runs 8 -20 FB-cosmo FB-BIER 1010 $\log(M_{
m vir}) \left[h^{-1} M_{\odot} \right]$ $\log(M_{\rm vir}) \left[h^{-1} M_{\odot} \right]$

 Saturation strength does **not** dependent on M_{halo}

ENRICO GARALDI

- Threshold M_{halo} for saturation depends on seed model
- SN inj. has different shape because the B seed is *strong and localised*

B fields in the IGM

- Low-density gas retain traces of the seed field
- Biermann and Durrive batteries produce IGM fields lower than the (debated) Neronov&Vovk 2010 lower limit

COHERENCE LENGTHS (at z=0)

 $L_{_C} \approx 0.33$ Mpc/h for FB-BIER, FB-DURR, FB-SNE

 $L_{_{C}}\approx 0.49$ Mpc/h for FB-COSMO

RM prediction

Garaldi et al. 2021

 $RM [rad m^{-2}]$

Suite of **self-consistent MHD+RT** simulations, with state-of-the-art galaxy formation models and different magnetic field seeding.

- The Durrive battery is a viable candidate for magnetogenesis
- Observed galactic magnetic fields can be explained **without** a cosmological seeding mechanism
- The Durrive and Biermann battery behave similarly, but the latter is typically stronger
- The Durrive and Biermann battery are in tension with the (debated) Neronov & Vovk 2010 IGM lower limit

The THESAN simulation: self-consistent RMHD+dust

THESAN is a simulation suite developed to capture **simultaneously** galaxy formation and reionization. (Garaldi et al. 2022, Kannan, EG, et al. 2022, Smith, EG, et al. 2022, ...)

FEATURES: RMHD simulations (with the AREPO code)
+ Illustris-TNG galaxy formation model
+ self-consistent radiation transport
+ uniform initial (z=50) B field of 10 ⁻¹⁶ G.
+ dust creation & destruction
+ variance-suppressed initial conditions
+ cosmological volume (100 Mpc)³
+ physical variations (photon escape, DM)
+ main box stops at z=5.5, but some go to z=0

All data and data product will be freely available soon at www.thesan-project.com

magnetic field strength dust density

gas density

B fields filling factor

ENRICO GARALDI

Effect of SN energy: zoom-in

ENRICO GARALDI

Effect of SN energy

ENRICO GARALDI

THESAN agrees with many high-z observables

