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Magnetic fields

I The Universe is magnetized in a wide range of spatial scales.

I The presently observed cosmic magnetic fields could have a primordial
origin.

I It is important to take into account the magnetic field effect when
addressing early universe events:

I Cosmic phase transitions.
I Inflationary process.
I Particles decay process.



Inflation

I Early models of inflation -supercooled models- assumed very little
interaction of the inflaton with all other fields until the reheating
process, at the end of inflation.

I In warm inflation1, the inflaton is assumed to interact with other fields
in a continuous and more natural way.

I A successful implementation of this model is embedded in the
framework of supersymmetry.

I It rests on a two-step process of radiation production,

φ→ χ→ yy,

where φ is the inflaton, χ an intermediary heavy field and y the light
sector, composed of fermions ψy and scalars y.

1
A. Berera, Phys. Rev. D 71, 023514 (2005).



Warm Inflation

I The model requires a dissipative component Γ of sizable strength as
compared to the expansion rate of the universe.

I This additional dissipation, responsible for producing radiation,
modifies the equation of motion for the inflaton φ:

φ̈+ (3H + Γφ)φ̇+ VT,φ = 0

where H is the Hubble parameter and VT is the inflaton effective
potential. Warm inflation requires Γ > 3H.



Warm Inflation

The superpotential that involves all the interactions of the inflaton and the
intermediate field χ reads2

W = gΦΛ2 − gΦX2 − hXY1Y2,

where Y are the light superfields coupled to X, the heavy sector. g and h
are coupling constants (∼ O(0.1)) and Λ is a mass scale (up to
∼ O(1011GeV 4)).
Note that if the heavy field is charged then the following relation holds

qX = qY1 − qY2

with qi the charge of each particle.

2
L. M. Hall and I .G. Moss, Phys. Rev. D 71, 023514 (2005).



Effective potential

The contribution to the inflaton effective potential coming from the heavy charged
particles up to one loop reads3,
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where D and S are the propagators of boson and fermion, respectively.
In the presence of an external and uniform magnetic field B, which defines the
z-direction, the above expressions become
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with s the Schwinger proper time parameter, (a · b)|| ≡ a0b0 − a3b3,

(a · b)⊥ ≡ a1b1 + a2b2 and σ3 the third Pauli matrix. qχ denotes the charge
associated to the heavy superfield fermion or boson components.

3
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Effective potential

Once the integration over the momentum is carried out, and all divergent
terms are isolated, the effective potential can be written as
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with

V 1
0 =

1

8π2

∫ ∞
0

ds

s3

{
e−sm

2
χ − e−sm

2
ψχ

}

V 1
qχB2 = −

1

8π2

∫ ∞
0

ds

s

{
e−sm

2
χ + 2 e

−sm2
ψχ

}
(qχB)2

6

V 1
df =

1

8π2

∫ ∞
0

ds

s3

{
e−sm

2
χ

[
qχBs

sinh(qχBs)
− 1 +

1

6
(qχBs)

2

]
−e−sm

2
ψχ

[
qχBs

coth(qχBs)
− 1−

1

3
(qχBs)

2

]}
,

where the masses mχ and mψχ keep track of the bosonic and fermionic
sectors, respectively.



Thermal masses
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Figure: Feynman diagrams that account for the interaction between heavy and
light fields at one-loop, where double lines indicate that the charged particles are
dressed with the magnetic field effects. Continuous lines indicate fermionic fields,
ψχ and ψyi , and dashed lines indicate bosonic fields, χ and yi.



Thermal masses

The main divergences cancel out (from SUSY) and the remaining ones are
due to the soft SUSY breaking term, defined as the slight difference
between the fermion and boson masses, that is

m2
χ(T,B) = 2g2φ2 +m2

b(T,B) +M2
s ,

m2
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f (T,B),

where m2
b(T,B) and m2

f (T,B, r) are the one loop self-energy corrections to
the fermion and boson masses, respectively, that have to be calculated in a
thermal magnetized bath.
By imposing that the effective potential lower value be zero at φ = φ0, with
φ0 the inflaton vev, that is
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we carried out the renormalization.



Magnetic masses

Since the external magnetic field is felt by the heavy sector, it must
represent the highest physical scale for the light particles, that can be
considered as constrained into the Lowest Landau Level (LLL) (neglecting
the T contribution).
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The magnetic field introduces an additional SUSY breaking (from the
different signs).



Effective potential
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Figure: Effective potential normalized by V(0, 0), for different magnetic field strengths for

Ms/φ0 = 0.05, m1/φ0 = 10−3, m2/φ0 = 5× 10−3, g = 0.1 and h = 0.1.

where ∆V(φ,B) ≡ V (1)(φ,T,B)−V (1)(0,T,B)

V (1)(0,0,0)
+ 1.



Magnetic effect on decay width

To calculate the charged scalar particle decay width we made use of the
optical theorem, which relates the self-energy imaginary part with the
decay width, as follows
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Magnetic effect on decay width
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Figure: Decay width ratio ΓB/Γ, of a heavy charged scalar into two light charged
fermions, for different magnetic field strengths, for Ms/φ0 = 0.05, m1/φ0 = 10−3,
m2/φ0 = 5× 10−3, g = 0.1. The magnetic field enhances this process.



Slow-roll parameters
The slow-roll conditions can be verified through the parameter
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Figure: Slow-roll parameter ε for different magnetic field strengths with
Ms/φ0 = 0.05, m1/φ0 = 10−3, m2/φ0 = 5× 10−3, g = 0.1 and h = 0.1.



Final remarks

I In this work we have studied the effects that a possible primordial
magnetic field can have on the inflaton potential, taking as the
underlying model a warm inflation scenario and considering that all
fields interacting with the inflaton field are charged.

I We found that the magnetic field effect on the effective potential is to
make it less steep as compared with the vacuum case, showing that
magnetic fields do not spoil the inflationary process.

I This statement is supported by the behavior shown by the slow-roll
ε-parameter as a function of the magnetic field.

I We have estimated the magnetic field effect on the decaying process of
the heavy particles, in one channel. More work has to be done.
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