cosmic magnetism through the lens of gamma rays

Cosmic Magnetism in Voids and Filaments 24 January 2023 Bologna

Rafael Alves Batista

Instituto de Física Teórica (IFT UAM-CSIC) Universidad Autónoma de Madrid

@8rafael

rafael.alvesbatista@uam.es www.8rafael.com

Alves Batista, Shin, Devriendt, Semikoz, Sigl. PRD, 96 (2017) 023010. arXiv:1704.05869

cosmic magnetic fields

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

 10^{-3} 10^{-5} - 10^{-7} diffusion 10^{-9} $\frac{0}{10^{-1}}$ magnetic 10^{-13} 10^{-15} . 10^{-17} . 10^{-19} - 10^{-13} 10^{-9}

 10^{-3} 10^{-5} - 10^{-7} 10^{-9} diffusion $\underbrace{\mathfrak{O}}_{10^{-1}}$ magnetic 10^{-13} 10^{-15} - 10^{-17} - 10^{-19} - 10^{-13} 10^{-9}

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista I

pair production

 $\gamma + \gamma_{bg} \rightarrow e^+ + e^-$

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista I

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista I

P

e⁺

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista I

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

- blazars +
- gamma-ray bursts +

which sources can we use?

- blazars +
- gamma-ray bursts +

what makes a source suitable?

et

which sources can we use?

Rafael Alves Batista Cosmic magnetism through the lens of gamma rays Jan 24, 2023 I

- blazars +
- gamma-ray bursts +

what makes a source suitable?

emission geometry (collimated jets) +

et

which sources can we use?

Cosmic magnetism through the lens of gamma rays Rafael Alves Batista Jan 24, 2023 I

7

- blazars
- gamma-ray bursts •

what makes a source suitable?

emission geometry (collimated jets) +

et

knowledge of of HE emission •

which sources can we use?

Cosmic magnetism through the lens of gamma rays Rafael Alves Batista Jan 24, 2023 I

7

- blazars
- gamma-ray bursts •

what makes a source suitable?

emission geometry (collimated jets) +

et

- knowledge of of HE emission +
- known time emission profile •

which sources can we use?

observational strategies

strategy 1: point-like sources will appear extended

strategy 2: secondary gamma rays will arrive with time delays

strategy 3: combination of 1 and 2 \rightarrow spectral changes

measuring IGMFs with gamma rays

Cosmic magnetism through the lens of gamma rays Rafael Alves Batista Jan 24, 2023 I

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

Alves Batista & Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

(selected) gamma-ray constraints on IGMFs

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

(selected) gamma-ray constraints on IGMFs

results highly model-dependent

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

astrophysical inputs (source)

pair production

 $\gamma + \gamma_{bg}$ + e⁻

 $e^{\pm} + \gamma_{bg} \rightarrow e^{\pm} + \gamma$

Cosmic magnetism through the lens of gamma rays

Cosmic magnetism through the lens of gamma rays

model

particle acceleration particle interactions magnetic fields

et

building a model

model

particle acceleration particle interactions magnetic fields

et

observables

building a model

model

particle acceleration particle interactions magnetic fields

et

energy spectrum arrival directions arrival times

observables

building a model

model

particle acceleration particle interactions magnetic fields

energy spectrum arrival directions arrival times

observables

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

0+

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

step

resolution (Δx)

small: resolve interactions

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

Δx

step

resolution (Δx)

small: resolve interactions

large: speed up simulation

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

Δx

step

resolution (Δx)

small: resolve interactions

large: speed up simulation

magnetic field structure

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

Δx

step

resolution (Δx)

small: resolve interactions

large: speed up simulation

magnetic field structure

 resolve propagation regime (diffusive vs. ballistic)

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

Δx

step

resolution (Δx)

small: resolve interactions

large: speed up simulation

magnetic field structure

 resolve propagation regime (diffusive vs. ballistic)

geometry

0+

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

Δx

step

resolution (Δx)

small: resolve interactions

large: speed up simulation

magnetic field structure

 resolve propagation regime (diffusive vs. ballistic)

geometry

the "aiming" problem

P⁺

- does an interaction occur at this step?
 - *no*: continue
 - yes: add by-products
- compute Lorentz force at each step

pair production

 $\gamma + \gamma_{bg} \rightarrow e^+ + e^-$

canonical cascade photons

canonical cascade photons

canonical cascade photons

plasma instabilities

energy losses: dE / dx

canonical cascade photons

plasma instabilities

energy losses: dE / dx

quenched cascade photons

see talk by Mahmoud Alawashra

plasma instabilities

energy losses: dE / dx

canonical cascade photons

quenched cascade photons

16

canonical cascade photons

quenched cascade photons

Cosmic magnetism through the lens of gamma rays Rafael Alves Batista Jan 24, 2023 I
plasma instabilities: do they quench electromagnetic cascades?

canonical cascade photons

quenched cascade photons

17

Rafael Alves Batista Cosmic magnetism through the lens of gamma rays Jan 24, 2023 I

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

Rafael Alves Batista Cosmic magnetism through the lens of gamma rays Jan 24, 2023 I

Cosmic magnetism through the lens of gamma rays **Rafael Alves Batista** Jan 24, 2023 I

helicity:
$$\mathscr{H} = \int d^3 r \overrightarrow{A} \cdot \overrightarrow{B}$$

- helicity is approximately conserved \rightarrow helical IGMFs in voids could be (mostly) undisturbed \rightarrow window to early universe
- do they leave a signature on gamma rays?

helical intergalactic magnetic fields

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

Alves Batista, Saveliev, Sigl, Vachaspati. PRD 94 (2016) 083005. arXiv:1607.00320

helicity:
$$\mathscr{H} = \int d^3 r \overrightarrow{A} \cdot \overrightarrow{B}$$

- helicity is approximately conserved \rightarrow helical IGMFs in voids could be (mostly) undisturbed \rightarrow window to early universe
- do they leave a signature on gamma rays?

helical intergalactic magnetic fields

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

Alves Batista, Saveliev, Sigl, Vachaspati. PRD 94 (2016) 083005. arXiv:1607.00320

helicity:
$$\mathscr{H} = \int d^3r$$

- helicity is approxin could be (mostly) u
- do they leave a sig

helical intergalactic magnetic fields

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

gamma-ray constraints on IGMFs: quo vadis?

gamma-ray constraints on IGMFs: quo vadis?

gamma-ray constraints on IGMFs: quo vadis?

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

gamma-ray constraints on IGMFs: quo vadis?

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

gamma-ray constraints on IGMFs: quo vadis?

large-scale distribution VS. "statistical" properties

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

gamma-ray constraints on IGMFs: quo vadis?

large-scale distribution VS. "statistical" properties

Rafael Alves Batista Jan 24, 2023 | Cosmic magnetism through the lens of gamma rays

propagation model

gamma-ray observations

propagation model

gamma-ray observations

propagation model

gamma-ray observations

propagation model

magnetic fields

source properties

gamma-ray observations

propagation model

magnetic fields

source properties

EBL models

20

gamma-ray observations

propagation model

magnetic fields

gamma-ray observations

propagation model

magnetic fields

propagation model

agnetic fields	
S	observations

summary & outlook

Rafael Alves Batista | Jan 24, 2023 | Cosmic magnetism through the lens of gamma rays

summary & outlook

there are many constraints on IGMFs, but results are not completely conclusive

summary & outlook

- there are many constraints on IGMFs, but results are not completely conclusive \bullet
- we probably know how to simulate cascades well enough to constrain IGMFs

summary & outlook

- there are many constraints on IGMFs, but results are not completely conclusive +
- we *probably* know how to simulate cascades well enough to constrain IGMFs
- unfortunately we cannot scan the whole parameter space efficiently +

- there are many constraints on IGMFs, but results are not completely conclusive +
- we probably know how to simulate cascades well enough to constrain IGMFs
- unfortunately we cannot scan the whole parameter space efficiently \bullet
- assumptions made to forecast gamma-ray signatures of IGMFs might not be good enough

- there are many constraints on IGMFs, but results are not completely conclusive
- we probably know how to simulate cascades well enough to constrain IGMFs
- unfortunately we cannot scan the whole parameter space efficiently
- assumptions made to forecast gamma-ray signatures of IGMFs might not be good enough
- + future radio surveys \rightarrow better knowledge of IGMF \rightarrow better models of gamma-ray propagation \rightarrow 3D models of the distribution of IGMFs are needed

- there are many constraints on IGMFs, but results are not completely conclusive
- we probably know how to simulate cascades well enough to constrain IGMFs
- unfortunately we cannot scan the whole parameter space efficiently
- assumptions made to forecast gamma-ray signatures of IGMFs might not be good enough
- + future radio surveys \rightarrow better knowledge of IGMF \rightarrow better models of gamma-ray propagation \rightarrow 3D models of the distribution of IGMFs are needed
- **can we really <u>measure</u> IGMFs using high-energy energy gamma rays in the near future?**

summary & outlook

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

- there are many constraints on IGMFs, but results are not completely conclusive +
- we probably know how to simulate cascades well enough to constrain IGMFs
- unfortunately we cannot scan the whole parameter space efficiently
- assumptions made to forecast gamma-ray signatures of IGMFs might not be good enough
- + future radio surveys \rightarrow better knowledge of IGMF \rightarrow better models of gamma-ray propagation \rightarrow 3D models of the distribution of IGMFs are needed

can we really <u>measure</u> IGMFs using high-energy energy gamma rays in the near future?

IGMF constraints are just as good as the models used to derive them

where do we stand?

- there are many constraints on IGMFs, but results are not completely conclusive +
- we probably know how to simulate cascades well enough to constrain IGMFs
- unfortunately we cannot scan the whole parameter space efficiently
- assumptions made to forecast gamma-ray signatures of IGMFs might not be good enough
- + future radio surveys \rightarrow better knowledge of IGMF \rightarrow better models of gamma-ray propagation \rightarrow 3D models of the distribution of IGMFs are needed

can we really <u>measure</u> IGMFs using high-energy energy gamma rays in the near future?

- IGMF constraints are just as good as the models used to derive them
- (the devil is in the details)

summary & outlook

where do we stand?

- there are many constraints on IGMFs, but results are not completely conclusive +
- we probably know how to simulate cascades well enough to constrain IGMFs
- unfortunately we cannot scan the whole parameter space efficiently
- assumptions made to forecast gamma-ray signatures of IGMFs might not be good enough
- + future radio surveys \rightarrow better knowledge of IGMF \rightarrow better models of gamma-ray propagation \rightarrow 3D models of the distribution of IGMFs are needed

can we really <u>measure</u> IGMFs using high-energy energy gamma rays in the near future?

- IGMF constraints are just as good as the models used to derive them
- (the devil is in the details)
- other effects such as plasma instabilities could be important

summary & outlook

acknowledgements

European Commission

back-up slides

Cosmic magnetism through the lens of gamma rays Rafael Alves Batista Jan 24, 2023 I

gamma rays: interactions during cosmological propagation

Δ-	+	0 +

constraining IGMFs with the ASTRI Mini-Array

Vercellone et al. JHEAp 35 (2022) 1. arxiv:2208.03177

constraining IGMFs with the ASTRI Mini-Array

probing IGMFs with the Cherenkov Telescope Array (CTA)

CTA Consortium. JCAP 02 (2021) 048. arXiv:2010.01349

probing IGMFs with the Cherenkov Telescope Array (CTA)

CTA Consortium. JCAP 02 (2021) 048. arXiv:2010.01349

probing IGMFs with the Cherenkov Telescope Array (CTA)

CTA Consortium. JCAP 02 (2021) 048. arXiv:2010.01349

CHARD?

The state

probing IGMFs with the Cherenkov Telescope Array (CTA)

CTA Consortium. JCAP 02 (2021) 048. arXiv:2010.01349

CHAR !!

The state

probing IGMFs with the Cherenkov Telescope Array (CTA)

CTA Consortium. JCAP 02 (2021) 048. arXiv:2010.01349

CHARD?

THE

cookbook for astroparticle transport

cookbook for astroparticle transport

injection spectrum initial composition source distribution source emissivity evolution

cookbook for astroparticle transport

injection spectrum initial composition source distribution source emissivity evolution

propagation

cookbook for astroparticle transport

injection spectrum initial composition source distribution source emissivity evolution

cookbook for astroparticle transport

particle interactions particle acceleration background photon fields background matter fields magnetic fields

injection spectrum initial composition source distribution source emissivity evolution

cookbook for astroparticle transport

particle interactions particle acceleration background photon fields background matter fields magnetic fields

outputs

injection spectrum initial composition source distribution source emissivity evolution

cookbook for astroparticle transport

particle interactions particle acceleration background photon fields background matter fields magnetic fields

outputs

spectrum composition arrival directions arrival times

injection spectrum initial composition source distribution source emissivity evolution

cookbook for astroparticle transport

particle interactions particle acceleration background photon fields background matter fields magnetic fields

injection spectrum initial composition source distribution source emissivity evolution

cookbook for astroparticle transport

particle interactions particle acceleration background photon fields background matter fields magnetic fields

mixing all ingredients \rightarrow interpret (fit) observations based on models

mixing all ingredients \rightarrow interpret (fit) observations based on models

- mixing all ingredients \rightarrow interpret (fit) observations based on models
- this should be done *self-consistently for all messengers*

- mixing all ingredients \rightarrow interpret (fit) observations based on models
- this should be done *self-consistently for all messengers*
- need to *scan full parameter space* of uncertainties

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142 Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

- publicly available Monte Carlo code
- propagation of high-energy cosmic rays, gamma rays, neutrinos, and electrons
- Galactic and extragalactic propagation
- modular structure
- parallelisation with OpenMP
- development on Github: https://github.com/CRPropa/CRPropa3
- **CRPropa 3.2 coming out soon!**

the CRPropa framework for astroparticle propagation

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142 Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

multimessenger studies

CRPropa: interaction processes

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142 Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

CRPropa: interaction processes

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista I

https://crpropa.desy.de/

CECsi

(some) computational tools for model building

https://github.com/tfitoussi/CECsi

CRbeam

https://github.com/okolo/mcray

Rafael Alves Batista Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays

Elmag

https://elmag.sourceforge.net/ Kachelriess et al. Comp. Phys. Comms. 183 (2012) 1036. arXiv:1106.5508 Blytt et al. Comp. Phys. Comms. 252 (2019) 107163. arXiv:1909.09210

https://crpropa.desy.de/

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142 Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

CECsi

(some) computational tools for model building

https://github.com/tfitoussi/CECsi

Fitoussi et al. MNRAS 466 (2017) 3472. arXiv:1701.00654

CRbeam

https://github.com/okolo/mcray

Kalashev et al. arXiv:2201.03996

Rafael Alves Batista Jan 24, 2023 | Cosmic magnetism through the lens of gamma rays

plasma instabilities in the intergalactic medium

• collective plasma phenomena relevant if: $n_{beam} \lambda_{pl}^3 \gg 1$ skin depth: $\lambda_{pl} = \frac{2\pi c}{\omega_{pl}}$ $\omega_{pl} = \sqrt{\frac{e^2 n_{IGM}}{\varepsilon_0 m_e}}$ Sironi & Giannios 2014; Schlickeiser+ 2012; Vafin+2018]

the dominant instability determines if this effect affects the spectra of TeV blazars

- \triangleright for instance, non-linear Landau damping may dominate \rightarrow plasma instabilities do not play a significant role [Miniati & Elyiv 2013]
- ▶ IGMF constraints do not change strongly even if (the oblique) instabilities act \rightarrow lower limit on B changes by \sim 10 [Yan+ 2019]
- instabilities may not compromise IGMF constraints, depending on the blazar spectrum and IGM parameters [Alves Batista+ 2019]

- \triangleright plasma instabilities may quench electromagnetic cascades \rightarrow IGMF constraints unreliable(?) [Broderick+ 2012;

Broderick et al. ApJ 752 (2012) 22. arXiv:1106.5494 Schlickeiser et al. ApJ 758 (2012) 102. Miniati & Elyiv. ApJ 770 (2013) 54. arXiv:1208.1761 Sironi & Giannios. ApJ 787 (2014) 49. arXiv:1312.4538 Vafin et al. ApJ 857 (2018) 43. arXiv:1803.02990 Yan et al. ApJ 870 (2019) 70. arXiv:1810.07013 Alves Batista, Saveliev, de Gouveia Dal Pino. arXiv:1904.13345

Jan 24, 2023 I Cosmic magnetism through the lens of gamma rays Rafael Alves Batista

Alves Batista, Saveliev, de Gouveia Dal Pino. MNRAS 489 (2019) 3836. arXiv:1904.13345

plasma instabilities: quenching factors

Cosmic magnetism through the lens of gamma rays Rafael Alves Batista Jan 24, 2023 I

model A; $\alpha = 1.0$ 10^{3} $E_{\rm max} = 1 \times 10^{12} \ {\rm eV}$ $E_{\rm max} = 3 \times 10^{12} {\rm eV}$ $E_{\rm max} = 1 \times 10^{13} \ {\rm eV}$ $E_{\rm max} = 3 \times 10^{13} {\rm ~eV}$ z=0.14 10^{2} - $\cdot \frac{1}{2} \cdot \frac{1}{2}$ 10^{1} 10^{0} 10¹¹ 10^{10} 10^{11} 10^{9} E [eV]model A; $\alpha = 2$. 2.0 $E_{\rm max} = 1 \times 10^{12} \ {\rm eV}$ $E_{\rm max} = 3 \times 10^{12} {\rm eV}$ 1.8- $E_{\rm max} = 1 \times 10^{13} \ {\rm eV}$ $E_{\rm max} = 3 \times 10^{13} \, {\rm eV}$ 1.6 -· 9 |· 4 -1.2 -1.0 0.8 1013 10^{12} 10^{9} 10^{10} 10^{11} 10^{14} E [eV]

Alves Batista, Saveliev, de Gouveia Dal Pino. MNRAS 489 (2019) 3836. arXiv:1904.13345

plasma instabilities: quenching factors

Cosmic magnetism through the lens of gamma rays Rafael Alves Batista Jan 24, 2023 I

