

From the HERMES fleet to the flight of the ALBATROS: surfing the waves of quantum space-time

Luciano Burderi - University of Cagliari

Tiziana Di Salvo, Andrea Sanna, Fabrizio Fiore, Alessandro Riggio On behalf of the HERMES, GrailQuest and ALBATROS Collaborations

SCIENTIFIC CHALLENGES FOR THE NEXT DECADES

Multi-Messenger Astronomy

Testing Quantum Gravity

Development of Multi-messenger astronomy

GW/GRB 170817

Multi-Messenger Astronomy Paradox

We need a high-energy All-sky Monitor with large area to allow Multi-Messenger Astronomy to develop from infancy to maturity!

Monte-Carlo simulations of a true long GRB

Template (1ms resolution) of a long GRB (derived from GRB130502327 observed by Fermi GBM)
$\Delta \mathrm{t}=40 \mathrm{~s} ; \varphi_{\mathrm{GRB}}=6.5 \mathrm{phot} / \mathrm{s} / \mathrm{cm}^{2} ; \varphi_{\mathrm{BCK}}=2.8$ phot $/ \mathrm{s} / \mathrm{cm}^{2} ;$ variability $\approx 5 \mathrm{~ms} ;$ (Long and Short GRB with millisecond time variability, 40% of bright)

Accuracy in delays from cross-correlation analysis

Accuracy in determining delays from a bright long GRB with
$\Delta \mathrm{t}=40 \mathrm{~s}$;
$\varphi_{\mathrm{GRB}}=6.5 \mathrm{phot} / \mathrm{s} / \mathrm{cm}^{2}$;
$\varphi_{\mathrm{BCK}}=2.8 \mathrm{phot} / \mathrm{s} / \mathrm{cm}^{2}$;
variability timescale $\approx 5 \mathrm{~ms}$;
1000 pair of Monte-Carlo simulations for detectors of different effective areas A

Best fit formula:

$\sigma_{\text {DELAYS }} \approx \sigma_{\text {ToA }}=3.3 \mu \mathrm{~s} \times\left(\mathrm{A} / 1 \mathrm{~m}^{2}\right)^{-0.58}$

GW Triangulation \& EM counterparts (Fermi GBM, INTEGRAL, HERMES Pathfinder)

Example:
long bright GRB $6.5 \mathrm{phot} / \mathrm{s} / \mathrm{cm}^{2}$ (source) $3 \mathrm{phot} / \mathrm{s} / \mathrm{cm}^{2}$ (background) 30 s duration
50-300 keV band

3 satellites each of effective area: $50 \mathrm{~cm}^{2}$
$\sigma_{\mathrm{ToA}} \approx 1 \mathrm{~ms}$
$<$ baseline> $\approx 6000 \mathrm{~km}$ positional accuracy: 3 deg

Existence of a Minimal Length (String theories, etc.)

$$
l_{\mathrm{MIN}} \approx l_{\text {PLANCK }}=\left[\mathrm{Gh} /\left(2 \pi \mathrm{c}^{3}\right)\right]^{1 / 2}=1.6 \times 10^{-33} \mathrm{~cm}
$$

implies:
i) Lorentz Invariance Violation (LIV): no further Lorentz contraction
ii) Space has the structure of a crystal lattice and therefore
iii) Existence of a dispersion law for photons in vacuo

$$
\begin{aligned}
& \left|\mathrm{v}_{\mathrm{phot}} / \mathrm{c}-1\right| \approx \xi \mathrm{E}_{\mathrm{phot}} /\left(\mathrm{M}_{\mathrm{QG}} \mathrm{c}^{2}\right)^{\mathrm{n}} \\
& \xi \approx 1 \\
& \mathrm{n}=1,2(\text { first or second order corrections }) \\
& \mathrm{M}_{\mathrm{QG}}=\zeta \mathrm{m}_{\text {PLANCK }} \quad(\zeta \approx 1) \\
& \mathrm{m}_{\text {PLANCK }}=(\mathrm{hc} / 2 \pi \mathrm{G})^{1 / 2}=21.8 \quad 10^{-6} \mathrm{~g}
\end{aligned}
$$

First and second order Dispersion Relation for photons in vacuo

LIV theories

First Order Dispersion Relation
$\mathrm{v}_{\text {phot }} / \mathrm{c} \approx 1-\xi \mathrm{E}_{\text {phot }} /\left(\mathrm{M}_{\text {Planck }} \mathrm{c}^{2}\right)$

No LIV theories

Second Order Dispersion Relation
$\mathrm{v}_{\text {phot }} / \mathrm{c} \approx 1-\xi\left[\mathrm{E}_{\text {phot }} /\left(\mathrm{M}_{\text {Planck }} \mathrm{c}^{2}\right)\right]^{2}$
$\xi=1 / 2$ (Burderi et. al., in preparation)

Accumulation of delays in light propagation:
$\Delta t_{\text {LIV }}=\xi\left(D_{\text {TRAV }} / \mathbf{c}\right)\left[\Delta \mathbf{E}_{\text {phot }} /\left(\mathbf{M}_{\text {QG }} \mathbf{c}^{2}\right)\right]^{\mathbf{n}}$
The distance traveled by photons takes into account the cosmological expansion:
$\mathrm{D}_{\text {TRAV }}(\mathrm{z})=\left(\mathrm{c} / \mathrm{H}_{0}\right) \int_{\mathbf{0}}^{\mathrm{z}} \mathrm{d} \boldsymbol{\beta}(1+\beta) /\left[\boldsymbol{\Omega}_{\boldsymbol{\Lambda}}+(1+\beta)^{\mathbf{3}} \boldsymbol{\Omega}_{\mathrm{M}}\right]^{1 / 2}$
z: cosmological redshift
Ω_{Λ} : ratio between the energy density due to the cosmological constant and the critical (closure) density of the Universe
Ω_{M} : ratio between the energy density due to the matter and the critical (closure) density of the Universe

The Energy \& Redshift delay

High z

Time lags caused by Quantum Gravity effects:

- $\propto \mid \mathrm{E}_{\text {phot }}$ (Band II)- $\mathrm{E}_{\text {phot }}$ (Band I) \mid
- $\propto \mathrm{D}_{\text {GRB }}\left(\mathrm{Z}_{\mathrm{GRB}}\right)$

Time lags caused by prompt emission mechanism:

- complex dependence from $\mathrm{E}_{\text {phot }}$ (Band II) and $\mathrm{E}_{\text {phot }}$ (Band I)
- independent of $\mathrm{D}_{\mathrm{GRB}}\left(\mathrm{z}_{\mathrm{GRB}}\right)$

GRBS \& Quantum Gravity

$\frac{\mathbf{d} \mathbf{N}_{\mathbf{E}}(\mathbf{E})}{\mathbf{d} \mathbf{A} \mathbf{d t}}=\mathbf{F} \times \begin{cases}\left(\frac{\mathbf{E}}{\mathbf{E}_{\mathrm{B}}}\right)^{\alpha} \exp \left\{-(\alpha-\beta) \mathbf{E} / \mathbf{E}_{\mathrm{B}}\right\}, & \mathbf{E} \leq \mathbf{E}_{\mathrm{B}}, \\ \left(\frac{\mathbf{E}}{\mathbf{E}_{\mathrm{B}}}\right)^{\beta} \exp \{-(\alpha-\beta)\}, & \mathbf{E} \geq \mathbf{E}_{\mathrm{B}} .\end{cases}$

$$
\sigma_{\mathrm{CC}} \approx 0.46 \mu \mathrm{sec} \times\left(2.610^{8} / \mathrm{N}\right)^{0.5}
$$

$$
\Delta \mathrm{t}_{\mathrm{MPLLIV}}=\xi\left(\mathrm{D}_{\mathrm{TRAV}} / \mathrm{c}\right)\left[\Delta \mathrm{E}_{\mathrm{phot}} /\left(\mathrm{M}_{\mathrm{QG}} \mathrm{c}^{2}\right)\right]^{\mathrm{n}}
$$

$$
\mathrm{D}_{\mathrm{TRAV}}(\mathrm{z})=\left(\mathrm{c} / \mathrm{H}_{0}\right) \int_{0}^{\mathrm{z}} \mathrm{~d} \beta(1+\beta) /\left[\Omega_{\Lambda}+(1+\beta)^{3} \Omega_{\mathrm{M}}\right]^{1 / 2}
$$

Bright Long GRB: $8.00(0.86 \mathrm{BCK}) \mathrm{c} / \mathrm{s}(50 \div 300 \mathrm{keV})-\Delta t=25 \mathrm{~s}$ Spectral shape: Band function with $\alpha=-1, \beta=-2.5 \div-2.0, E_{\mathrm{B}}=225 \mathrm{keV}$ Detector effective area: $\mathrm{A}=100 \mathrm{~m}^{2}$
Accuracy in cross-correlation in function of the number of photons: $E_{C C}(N)=0.46 \mu \mathrm{~s} \sqrt{2.610^{8} / N}$ $\Lambda \mathrm{CDM}$ cosmology: $\Omega_{\Lambda}=0.6911$ and $\Omega_{\text {Matter }}=0.3089$

Energy band	$E_{\text {AVE }}$	N	$E_{C C}(N)$	N	$E_{C C}(N)$	$\Delta \mathrm{T}_{\text {LIV }}(\xi=1.0, \zeta=1.0)$			
MeV	MeV	photons	$\mu \mathrm{s}$	photons	$\mu \mathrm{s}$	$\begin{gathered} \mu \mathrm{s} \\ z=0.1 \end{gathered}$	$\begin{gathered} \mu \mathrm{s} \\ z=0.5 \end{gathered}$	$\begin{gathered} \mu \mathrm{s} \\ z=1.0 \end{gathered}$	$\begin{gathered} \mu \mathrm{s} \\ z=3.0 \end{gathered}$
$0.005-0.025$	0.0112	3.80×10^{8}	0.38	3.02×10^{8}	0.43	0.04	0.25	0.51	1.42
0.025-0.050	0.0353	1.40×10^{8}	0.62	1.17×10^{8}	0.69	0.13	0.72	1.46	4.10
0.050-0.100	0.0707	1.10×10^{8}	0.71	9.98×10^{7}	0.74	0.27	1.43	2.93	8.21
0.100-0.300	0.1732	8.98×10^{7}	0.79	1.00×10^{8}	0.74	0.66	3.51	7.19	20.10
0.300-1.000	0.5477	2.07×10^{7}	1.64	3.82×10^{7}	1.20	2.09	11.11	22.72	63.56
$1.000-2.000$	1.4142	2.63×10^{6}	4.56	8.20×10^{6}	2.60	5.40	28.68	58.67	164.12
$2.000-5.000$	3.1623	1.07×10^{6}	7.19	4.92×10^{6}	3.35	12.07	64.12	131.19	367.00
$5.000-50.00$	15.8114	3.52×10^{5}	12.54	2.95×10^{6}	4.33	60.35	320.62	656.00	1834.98

Search for a first order Dispersion Relation in a sample of GRBs of known redshift (Burderi et al. Exp. Astr., 2021)

Accumulation of delays in light propagation:
$\Delta \mathbf{t}_{\text {LIV }}=\xi\left(\mathbf{D}_{\text {TRAV }} / \mathbf{c}\right)\left[\Delta \mathbf{E}_{\text {phot }} /\left(\mathbf{M}_{\mathbf{Q G}} \mathbf{c}^{\mathbf{2}}\right)\right]^{\mathbf{n}}$
For a sample of $\mathbf{i}=\mathbf{1} \ldots \mathbf{N}$ GRB of known redshift $\mathbf{z}_{\mathbf{i}}$ at a given energy \mathbf{E}, adopt:
$\mathbf{n}=1 ; \mathbf{D}_{\text {TRAV }} / \mathbf{c}=\tau_{0} \mathbf{f}(\mathbf{z}) ; \mathbf{M}_{\mathbf{Q G}}=\zeta \mathbf{m}_{\text {PLANCK }} ; \Delta \mathbf{E}_{\text {phot }}=\mathbf{E}-\mathbf{E}_{0}$
$\tau(\mathrm{E})=$ intrinsic spectral delay at $\mathrm{E} ; \xi / \zeta=\alpha(\mathrm{E}) \approx 1=$ delay constant at E
$\tau_{0}=1 / H_{0}$
$\mathrm{f}\left(\mathrm{z}_{\mathrm{i}}\right)=\int_{0} \mathrm{z} \mathrm{d} \beta(1+\beta) /\left[\Omega_{\Lambda}+(1+\beta)^{\mathbf{3}} \mathbf{\Omega}_{\mathrm{M}}\right]^{1 / 2}$

Thus we have:
$\Delta t_{i}=\tau(E)+\tau_{0} f\left(z_{i}\right) \times \alpha(E)\left(E-E_{0}\right) /\left(m_{\text {PLANCK }} \mathbf{c}^{\mathbf{2}}\right)$
Plot $\Delta \mathbf{t}_{\mathbf{i}}$ vs. $\mathbf{t}_{\mathbf{i}}=\boldsymbol{\tau}_{\mathbf{0}} \mathbf{f}\left(\mathbf{z}_{\mathbf{i}}\right)\left(\mathbf{E}-\mathbf{E}_{\mathbf{0}}\right) /\left(\mathbf{m}_{\text {PLANCK }} \mathbf{c}^{\mathbf{2}}\right)$ and fit with $\Delta t_{i}=\boldsymbol{\tau}(\mathbf{E})+\boldsymbol{\alpha}(\mathbf{E}) \times \mathbf{t}_{\mathbf{i}}$ to obtain $\boldsymbol{\tau}(\mathbf{E})$ and $\boldsymbol{\alpha}(\mathbf{E})$

If a first order dispersion relation is present, $\boldsymbol{\alpha}(\mathbf{E})=\boldsymbol{\alpha}$ for any energy \mathbf{E}
Compute the average value of $\boldsymbol{\alpha}(\mathbf{E})$ and its standard deviation: $\boldsymbol{\alpha}=<\boldsymbol{\alpha}(\mathbf{E})>$ and $\boldsymbol{\sigma}_{\boldsymbol{\alpha}}$, for all the energy considered,

Search for a first order Dispersion Relation in a sample of GRBs of known redshift

Since all the errors are of statistical origin, the accuracy of the method depend on the number of photons detected.

If the the delays are detectable (or constrained) for $\boldsymbol{\alpha}(\mathbf{E}) \approx \mathbf{1}$ with one GRB and a detector of effective area $\mathbf{A}=\mathbf{1 0 0} \mathbf{m}^{\mathbf{2}}$, the same number of photons and, therefore, accuracy is possible with a sample of $\mathbf{N}=\mathbf{1 0 0 0}$ GRBs and a detector of effective area

$$
A^{*}=100 \mathrm{~m}^{2} / \mathrm{N}=100 \mathrm{~m}^{2} / 1000=10^{6} \mathrm{~cm}^{2} / 1000=10^{3} \mathrm{~cm}^{2}
$$

Location of GRBs with fleets of satellites and redshifts

Accuracy in determining delays from Monte-Carlo simulations of 100 pairs of GRBs of fluence 260 (112 BCK) photons $/ \mathrm{cm}^{2}$ with detectors of different effective areas:

```
\mp@subsup{\sigma}{\mathrm{ DELAYS }}{}\approx\mp@subsup{\sigma}{\mathrm{ ToA }}{}=3.3\mu\textrm{s}\times(\textrm{A}/1 \mp@subsup{\textrm{m}}{}{2}\mp@subsup{)}{}{-0.58}
```

Accuracy in determining α and δ with $\mathrm{N}_{\text {SATELLITES }}\left(\mathrm{N}_{\mathrm{IND}}=\mathrm{N}_{\text {SATELLITES }}-1 ; \mathrm{N}_{\text {PAR }}=2\right.$):
$\sigma_{\alpha} \approx \sigma_{\delta}=\mathrm{c} \sigma_{\mathrm{ToA}} /<$ baseline $>\times\left(\mathbf{N}_{\mathrm{IND}}-\mathbf{N}_{\mathrm{PAR}}\right)^{-1 / 2}$
Large fleet of small satellites in Low Earth Orbits:
$\mathrm{A}=30 \times 30 \mathrm{~cm} \approx 0.1 \mathrm{~m}^{2}$
$\sigma_{\mathrm{ToA}} \approx 12.5 \mu \mathrm{~s}$
$\mathrm{N}_{\text {SATELLITES }} \approx 1000$
<baseline> $\approx 6,000 \mathrm{~km}$
$\sigma_{\alpha} \approx \sigma_{\delta} \approx 4 \operatorname{arcsec}$
Three satellites with detectors of $1 \mathrm{~m}^{2}$ effective area in Earth-Moon Lagrangian points:
$\mathrm{A} \approx 1.0 \mathrm{~m}^{2}$
$\sigma_{\mathrm{ToA}} \approx 3.3 \mu \mathrm{~s}$
$\mathrm{N}_{\text {SATELLITES }}=3$
$<$ baseline $>\approx 400,000 \mathrm{~km}$
$\sigma_{\alpha} \approx \sigma_{\delta} \approx 0.5 \operatorname{arcsec}$
Three satellites with detectors of $400 \mathrm{~cm}^{2}$ effective area in Cart-wheel orbits:
$\mathrm{A} \approx 1.0 \mathrm{~m}^{2}$
$\sigma_{\mathrm{ToA}} \approx 21.3 \mu \mathrm{~s}$
$\mathrm{N}_{\text {SATELLITES }}=3$
<baseline> $\approx 2,500,000 \mathrm{~km}$
$\sigma_{\alpha} \approx \sigma_{\delta} \approx 0.5 \operatorname{arcsec}$

Once the position is known, the redshift of the GRB host galaxy is obtained through pointed observations of large optical telescopes.

GrailQuest: First Quantum-Gravity dedicated experiment

Robust Quantum Gravity Experiment to:
i) Search for a Dispersion law for photons $\mathrm{Vph} / \mathrm{c} \sim\left[1-1 \mathrm{p} / \lambda_{\mathrm{ph}}\right]$
ii) Explore Space-Time Granular structure down to $1 \mathrm{p} \sim 10^{-33} \mathrm{~cm}$

Performed by means of a Constellation of $100 \div 10000$ small sats with:
i) Total collecting area: $\sim 100 \mathrm{~m}^{2}$
ii) Energy band: $50 \mathrm{keV}-50 \mathrm{MeV}$
iii) Time resolution: $<0.1 \mu \mathrm{~s}$

GrailQuest

Gamma-Ray Astronomy International Laboratory for QUantum Exploration of Space-Time

In a nutshell:
X-ray/Gamma All-Sky Monitor Transients sub-arcsec localisation Gravitational-Waves EM counterparts

Constellation of $100 \div 10000$ small sats keV-MeV energy band Time resolution <100 ns Collecting area $\sim 100 \mathrm{~m}^{2}$ Mass production Assembly line Costs reduction

Quantum Gravity Experiment Space-Time Granular structure $\ell_{\mathrm{p}} \sim 10^{-33} \mathrm{~cm}$ Dispersion law for photons $\mathrm{v}_{\mathrm{ph}} / \mathrm{c} \sim\left[1-\ell_{\mathrm{p}} / \lambda_{\mathrm{ph}}\right]$

GrailQuest selected for the 2019 Call for White Papers for the Voyage 2050 long term plan in the ESA Science Programme

Voyage 2050 - long term plan in the ESA science programme

GrailQuest: hunting for Atoms of Space and Time hidden in the wrinkle of Space-Time
A swarm of nano/micro/small-satellites to probe the ultimate structure of Space-Time and to provide an all-sky monitor to study high-energy astrophysics phenomena

The ALBATROS mission: cart-wheel orbits

3 satellites in "Cart-wheel" orbits (e.g., LISA orbits):

- 3 heliocentric orbits with $\mathrm{a}=1 \mathrm{AU}$
- 3 slightly different small inclinations (idegrees) w.r.t. to eclipting plane
- Equatorial triangle of side D $2.510^{6} \mathrm{~km}$
- Contact to ground up to 23 hours per day
- Wet mass $\sim 230 \mathrm{~kg}$ per satellite
- Dry mass $\sim 165 \mathrm{~kg}$ per satellite

Voyage 2050 Cesa

Astoninshingly
_ong
Baseline
Array
Iransient

Observatory from
Space

Lead proposer: Prof. Dr. Luciano Burderi University of Cagliari, Italy burderi@dsf.unica.it

Three satellites in "Cart-wheel" orbits: 3 heliocentric orbits with $\mathrm{a}=1 \mathrm{AU}$ and 3 slightly different small inclinations ($\mathrm{i} \approx 0.5^{\circ}$) w.r.t. the ecliptic plane: equilateral triangle of side $\mathrm{D} \approx 2.510^{6} \mathrm{~km}$.

Two $400 \mathrm{~cm}^{2}$ effective area detectors (HERMES like) per satellite pointing in opposite directions w.r.t. the equilateral triangle plane.
FoV: 4π steradians (whole sky)
Detection rate: $1 \div 2$ GRB/day
Positional accuracy with Temporal Triangulation Techniques:
$\sigma_{\alpha} \approx \sigma_{\delta} \approx \mathrm{c} \sigma_{\Delta \mathrm{t}} / \mathrm{B} \approx 24 \operatorname{arc}-\mathrm{sec} \times\left(\mathrm{B} / 2.5 \times 10^{6} \mathrm{~km}\right)^{-1} \times$ ($\sigma_{\Delta \mathrm{t}} / 1 \mathrm{~ms}$) implies: $\sigma_{\alpha} \approx \sigma_{\delta} \approx 0.5 \mathrm{arc}-\mathrm{sec}$ for $400 \mathrm{~cm}^{2}$ detectors

Prompt follow-up with ground-based optical telescopes: 75% success in determination of redshift z

Number of GRB with determined redshift detected in 4 yr nominal mission lifetime $\mathrm{N} \approx 1000$

The $\operatorname{ALBATROS}$ mission

Effective constrain of first order (LIV) Quantum Gravity dispersion law for photons

The HERMES project: the movie

That's all Folks!

Please, visit our websites: http://hermes.dsf.unica.it www.hermes-sp.eu

