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summary

1. Conventional algorithms for detecting GRBs.
2. A new algorithm: FOCuS-Poisson
3. Testing different algorithms



How Gamma-Ray Bursts are detected

The logic of count rate trigger algorithms is:

1. High-energy photons are counted as they reach the detector.

An average rate for the background is determined.

3. Observed photon counts are integrated over a timescale and compared against the
background guess.

4. Atriggerisissued if the significance of the excess in observed counts overcome a threshold.

N

5. Repeat step 4. for different timescales.

g. 667). Both the size and locations of the intervals over which
the signal is averaged affect the result, and therefore one must
consider many different values of the corresponding parameters.
The 1dea is to minimize the chances of missing a signal because,
for example, its duration is poorly matched to the interval
size chosen. It the background is determined dynamically, by

[2]: Studies in astronomical time series analysis. VI. Bayesian Blocks representations — Scargle, Jackson et al.
http://doi.org/10.1088/0004-637X/764/2/167

6. Repeat steps 1-5 for different energy bands.


http://doi.org/10.1088/0004-637X/764/2/167

Problems of conventional trigger algorithms

Count-rate trlgge I d |g0 rlth ms are not EVi I . BAT uses about 800 different criteria to detect GRBs

Setting the Triggering Thresholds on Swift, McLean et al..

They are robust and well understood.

offset by half of the accumulation time. A total of 120 different
triggers can be specified, each with a distinct threshold.
[2]: THE FERMI GAMMA-RAY BURST MONITOR, Meegan et al.

Yet t h ey . https://doi.org/10.1088/0004-637X/702/1/791
’ L]
One goal 1s to explore the widest possible parameter
. space. As such, as many triggers as possible will be
1. Are blaS ed' run simultaneously until the flight computer is nearly
2. Have ma ny param eters. iglgr:ted. Thus, special attention will be paid to the CPU

L ] L ] L ]
‘s [1]: The Trigger Algorithm for the Burst Alert Telescope on Swift,Fenimore et al.
3 . re I n effl C I e n t ° https://doi.org/10.1063/1.1579409
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A new algorithm for GRB detection

The idea: let’s make an algorithm which does not test for many timescales.. Let’s
make an algorithm that tests over all timescales!

The biggest constraint: we want the algorithm to be fast.

How?

1. Equipping the algorithm with a memory state and of the math necessary to
evaluate evidences of a burst.

2. Having the algorithm work only when evidences are actually there.



CUSUM, the math behind FOCuS

The math behind FOCuS is based over CUSUM, a well-established changepoint
detection techniques.

If traditional algorithm looks for transients based on their duration, CUSUM-based
algorithms looks for transients based on their intensity.

CUSUM search involves sequentially computing recursions like:

G =max (0,G—1., +x;logp — ANi(p—1))

where i is an intensity parameter



What does the recursion mean
Gy =max (0,C—1, +xilogpu— Ni(pn—1))

Formally this is a sequentially performed likelihood test.
You can have three states:

1. 7, = 0.There are no evidence for significant excess in count.

2. 0 < Z; < T?. There are some evidences for a change with post-change mean intensity p i.e.
keep acquiring.

3. Z. > T?. There are enough evidences for a change with intensity p within T sigma-significance
level.

At times in which you go from 1 to 2 you have a new candidate changepoint.
At times in which you go from 2 to 3 you have a trigger.



FOCUS - Functional Online CUSUM

Original implementation for normally distributed data by Romano G., Fearnhead P. et al.
Collaborated with Ward K., and Fearnhead P. to develop the Poisson version of the algorithm.

An improvement to CUSUM method which computes the CUSUM test statistic for all possible
post-change mean values u — equivalent to testing over all possible durations.

The idea is to solve in the post-change mean u the CUSUM recursion:

Gi(p) = max (0, Gi—1,, + wilog pp — Ai(p — 1))

: T?
and trigger whenever ¢ > -

Crucially, this is possible since solutions at a given time are piece-wise functions which can be
manipulated efficienty.

The (2 or 3) parameters of piece-wise solutions are stored in the memory state and represent
changepoints in the timeseries.



How the algorithm works

1. At each step, FOCuS takes as input the latest photon count observed and the
photon count expected from background.

2. The algorithm mantains a list of “changepoints”.

3. Only changepoints which can possibly result in a trigger are retained between
iterations.

4. Whenever the significance of the excess in counts since a changepoint relative to
background exceeds a threshold, a trigger is issued.

Per-iteration time and memory complexity after t observations is O (log(t)) for
exact implementations.



interval width

A visual comparison — algorithms traces

https://www.dropbox.com/s/kbes6098b09sms0/BM background visualization export.htm|?d|=0
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https://www.dropbox.com/s/kbes6o98b09sms0/BM_background_visualization_export.html?dl=0
https://www.dropbox.com/s/tsc8udpt3tzc5fu/focus_background_sworcw_export.html?dl=0

Assessing background

Whatever the detection algorithm, you will have to assess a background count-rate
against which compare your observation.

In online applications the background level is guessed from the same data which
are tested.

In many ways this is a problem of choosing the right filter.

The conventional way — SMA:

Lt — Lt—n+1
A[f no o A[f —1 -+ n

Other MA, interesting approach are worth investigation — e.g., EMA:

St = ATt + (1 — O;’)St_1



How to assess significance

The right way to assess counts significance:

bl exp (—b)

o = . / n(z)de =1—o(S)=1—a
S

i=n

The dangerous way to assess counts significance:

n—b

=7

The safe way to assess significance:

S :@n log(n/b) —2(n — b)
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Testing different algorithms

Three main metrics:

1. Detection power (or false negatives rate)
2. Computing times

3. False positives rates

On both synthethic and real data.
Presently we will cover only results obtained over synthetic data.

Synthetic data generated using a self-made SW tool called SynthBurst.
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Detection power — short burst

Note:

1. Constant, poissonian background.

2. 30 brightness steps, 48 repetitions per step.

3. GRB time profile modelled after real observations of
GRB180703.

Results:

1. Exact implementation of FOCuS operating with
information on the true background rate had
performances identical to those of an ideal
algorithm.

2. FOCUS-AES detected 92% of the simulated
burst which also triggered the ideal algorithm.

3. Parametric detected 86% of the simulated

burst which also triggered the ideal algorithm.
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Execution time [s]

Computational performances
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Box plot of the time needed to run over a time series of 10°
random generated counts sampled from a Poisson distribution
with rate parameter A = 5.6.

FOCuS-AES 22% faster than Parametric.




False positive rate
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The run length of FOCuS-AES is on average 38% smaller than
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Conclusions

Algorithms for detecting gamma-ray bursts stayed the same during
the last 50 years.

More efficient and accurate alternatives exists, one of which is FOCuS.

In a nutshell FOCuS is an algorithm which efficiently tests for the
presence of a GRB over all timescales, instead of many.



References

* K. Ward, G. Dilillo, I. Eckley, P. Fearnhead; 2022. Submitted.
https://arxiv.org/pdf/2208.01494.pdf

* G. Dilillo, K. Ward, R. Crupi, A. Vacchi, F. Fiore. In preparation.

For further inquiries:

* Giuseppe Dilillo, astrophysicist, INAF-IAPS (Rome), giuseppe.dilillo@inaf.it.

» Kester Ward, mathematician, University of Lancaster, k.ward4@I|ancaster.ac.uk.



https://arxiv.org/pdf/2208.01494.pdf
mailto:giuseppe.dilillo@inaf.it
mailto:k.ward4@lancaster.ac.uk

