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Summary

1. Conventional algorithms for detecting GRBs.

2. A new algorithm: FOCuS-Poisson

3. Testing different algorithms



How Gamma-Ray Bursts are detected

The logic of count rate trigger algorithms is:

1. High-energy photons are counted as they reach the detector.
2. An average rate for the background is determined.
3. Observed photon counts are integrated over a timescale and compared against the 

background guess.
4. A trigger is issued if the significance of the excess in observed counts overcome a threshold.

5. Repeat step 4. for different timescales.

6. Repeat steps 1-5 for different energy bands.

[2]: Studies in astronomical time series analysis. VI. Bayesian Blocks representations – Scargle, Jackson et al.
http://doi.org/10.1088/0004-637X/764/2/167

http://doi.org/10.1088/0004-637X/764/2/167


Problems of conventional trigger algorithms

Count-rate trigger algorithms are not evil. 
They are robust and well understood.

Yet, they:

1. Are biased.
2. Have many parameters.
3. Are inefficient. [1]: The Trigger Algorithm for the Burst Alert Telescope on Swift,Fenimore et al.

https://doi.org/10.1063/1.1579409

Setting the Triggering Thresholds on Swift, McLean et al..
https://doi.org/10.1063/1.1810931

[2]: THE FERMI GAMMA-RAY BURST MONITOR, Meegan et al.
https://doi.org/10.1088/0004-637X/702/1/791

https://doi.org/10.1063/1.1579409
https://doi.org/10.1063/1.1810931
https://doi.org/10.1088/0004-637X/702/1/791


A new algorithm for GRB detection

The idea: let’s make an algorithm which does not test for many timescales.. Let’s 
make an algorithm that tests over all timescales!

The biggest constraint: we want the algorithm to be fast.

How?

1. Equipping the algorithm with a memory state and of the math necessary to 
evaluate evidences of a burst.

2. Having the algorithm work only when evidences are actually there. 



CUSUM, the math behind FOCuS

The math behind FOCuS is based over CUSUM, a well-established changepoint 
detection techniques.

If traditional algorithm looks for transients based on their duration,  CUSUM-based 
algorithms looks for transients based on their intensity.

CUSUM search involves sequentially computing recursions like:

where 𝜇 is an intensity parameter



What does the recursion mean

Formally this is a sequentially performed likelihood test.
You can have three states:

1. Zt = 0. There are no evidence for significant excess in count.
2. 0 < Zt < T2. There are some evidences for a change with post-change mean intensity μ i.e. 

keep acquiring.
3. Zt > T2.  There are enough evidences for a change with intensity μ within T sigma-significance 

level.

At times in which you go from 1 to 2 you have a new candidate changepoint.
At times in which you go from 2 to 3 you have a trigger.



FOCuS - Functional Online CUSUM

• Original implementation for normally distributed data by Romano G., Fearnhead P. et al. 
Collaborated with Ward K., and Fearnhead P. to develop the Poisson version of the algorithm.

• An improvement to CUSUM method which computes the CUSUM test statistic for all possible 
post-change mean values 𝜇 – equivalent to testing over all possible durations.

• The idea is to solve in the post-change mean 𝜇 the CUSUM recursion:

and trigger whenever 𝜁 >
𝑇2

2
.

• Crucially, this is possible since solutions at a given time are piece-wise functions which can be 
manipulated efficienty. 

• The (2 or 3) parameters of piece-wise solutions are stored in the memory state and represent 
changepoints in the timeseries.



How the algorithm works

1. At each step, FOCuS takes as input the latest photon count observed and the 
photon count expected from background.

2. The algorithm mantains a list of “changepoints”.

3. Only changepoints which can possibly result in a trigger are retained between 
iterations.

4. Whenever the significance of the excess in counts since a changepoint relative to 
background exceeds a threshold, a trigger is issued.

Per-iteration time and memory complexity after 𝑡 observations is 𝑂 log 𝑡 for 
exact implementations.



A visual comparison – algorithms traces
https://www.dropbox.com/s/kbes6o98b09sms0/BM_background_visualization_export.html?dl=0 https://www.dropbox.com/s/tsc8udpt3tzc5fu/focus_background_sworcw_export.html?dl=0

https://www.dropbox.com/s/kbes6o98b09sms0/BM_background_visualization_export.html?dl=0
https://www.dropbox.com/s/tsc8udpt3tzc5fu/focus_background_sworcw_export.html?dl=0


Assessing background

Whatever the detection algorithm, you will have to assess a background count-rate 
against which compare your observation.
In online applications the background level is guessed from the same data which 
are tested. 
In many ways this is a problem of choosing the right filter.

The conventional way – SMA:

Other MA, interesting approach are worth investigation – e.g., EMA:



How to assess significance

The right way to assess counts significance:

The dangerous way to assess counts significance:

The safe way to assess significance:



Testing different algorithms

Three main metrics:

1. Detection power (or false negatives rate)

2. Computing times

3. False positives rates

On both synthethic and real data.

Presently we will cover only results obtained over synthetic data.

Synthetic data generated using a self-made SW tool called SynthBurst.



Note:

1. 30 brightness steps, 48 repetitions per step.
2. GRB time profile modelled after real observations of 

GRB120707.

Results:

1. Exact implementation of FOCuS operating with 
information on the true background rate had 
performances identical to those of an ideal 
algorithm.

2. FOCuS-AES detected 81% of the simulated 
burst which also triggered the ideal algorithm. 

3. Parametric detected 63% of the simulated 
burst which also triggered the ideal algorithm.

Detection power – long bursts



Note:

1. Constant, poissonian background.
2. 30 brightness steps, 48 repetitions per step.
3. GRB time profile modelled after real observations of 

GRB180703.

Results:

1. Exact implementation of FOCuS operating with 
information on the true background rate had 
performances identical to those of an ideal 
algorithm.

2. FOCuS-AES detected 92% of the simulated 
burst which also triggered the ideal algorithm. 

3. Parametric detected 86% of the simulated 
burst which also triggered the ideal algorithm.

Detection power – short burst



Computational performances

Average time (dots,crosses) and standard deviations running 
FOCuS and True TAs with infinite threshold over 100 

randomly generated time series of counts with different 
length. 

Box plot of the time needed to run over a time series of 105

random generated counts sampled from a Poisson distribution 
with rate parameter λ = 5.6. 

FOCuS-AES 22% faster than Parametric.



False positive rate

Run lengths of FOCuS-AES and Parametric with threshold 5.0σ 
over 1000 Poisson count data streams with constant mean rate.

The run length of FOCuS-AES is on average 38% smaller than 
parametric.

Average Run length as a function of the 
threshold.



Conclusions

Algorithms for detecting gamma-ray bursts stayed the same during 
the last 50 years.

More efficient and accurate alternatives exists, one of which is FOCuS.

In a nutshell FOCuS is an algorithm which efficiently tests for the 
presence of a GRB over all timescales, instead of many.
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