Dissecting the interstellar medium of a z=6.3 galaxy. X-shooter spectroscopy and HST imaging of the afterglow and environment of the Swift GRB 210905A

Stargate Collaboration

Speaker **ANDREA SACCARDI Observatoire de Paris - GEPI** Supervisor: S.D. Vergani

Credits: Futura Science

V Congresso Nazionale GRB - Trieste **12-15 Settembre 2022**

alaxies Étoiles Physique et Instrume

GRBs AS PROBES OF THE HIGH REDSHIFT UNIVERSE

Major issues of extragalactic astronomy

-What are the first objects to be formed in the Universe? -How do galaxies form and evolve? -What is their impact on the reionization? -What is the interplay between star formation and the inter-stellar gas?

Credits: ESO

GRBs AS PROBES OF THE HIGH REDSHIFT UNIVERSE

Major issues of extragalactic astronomy

-What are the first objects to be formed in the Universe? -How do galaxies form and evolve? -What is their impact on the reionization? -What is the interplay between star formation and the inter-stellar gas?

GRBs ARE IDEAL TOOLS TO TACKLE THESE ISSUES

ANDREA SACCARDI

LGRBs afterglows are unique powerful background sources to probe first galaxies

Credits: ESO

14/09/2022

- Extremely bright at all redshift
- Trace star formation to the highest redshift
- Afterglow emission fades —> Study of LGRB host
- Gas in the ISM (absorption lines Afterglow spectra) **Ionised gas (emission lines host galaxy spectra)**

З

ABSORPTION LINES IN HIGH REDSHIFT GRBs SPECTRA

From the analysis of the absorption lines we can measure:

Redshift of the absorbers

Column densities of the ions of different chemical elements

14/09/2022

ANDREA SACCARDI

submitted Cia et al. De A. Vergani, S.D. Saccardi,

6	K

VLT/X-shooter spectrum							
Еросн	ARM	EXP. TIME	λrange	RESOLUTION			
(Hours)	15	(S)	(nm)	(λ/δλ)			
2.53	UVB	4x1200	300-560	5400			
2.53	VIS	4x1200	560-1020	8900			
2.53	NIR	4x1200	1020-2100	5600			

From the absorption properties :

Metallicity and dust depletion The distance of the corresponding gas clouds (From the fine structure lines e.g. Vreeswijk+2007; D'Elia+2009) Kinematic of the gas Chemical abundance pattern

The overall host galaxy

A. Saccardi, S.D. Vergani, A. De Cia et al. submitted

We perform a detailed analysis of metallicity, chemical enrichment and dust depletion

Following De Cia et al. 2016, De Cia et al. 2021

AXIS

X = How refractory is an element Y ~ Elements abundances

FIT

Slope —> [Zn/Fe]_{fit} Intercept —> [M/H]_{tot}

We perform a detailed analysis of metallicity, chemical enrichment and dust depletion

The overall host galaxy

A. Saccardi, S.D. Vergani, A. De Cia et al. submitted

Component-by-component

A. Saccardi, S.D. Vergani, A. De Cia et al. submitted

ANDREA SACCARDI

ANDREA SACCARDI

14/09/2022

is [M/H] = -1.75 +/- 0.13 and DTM = 0.13 +/- 0.11

High enhancement of alpha elements: - high production from core-collapse SNe -a high fraction of massive stars

14/09/2022

ANDREA SACCARDI

11

High enhancement of alpha elements: - high production from core-collapse SNe -a high fraction of massive stars

Over-abundance of aluminium Under-abundance of oxygen: -typical of some stars found in

globular clusters and dwarf galaxies

-the best candidates are massive AGB stars and fast rotating massive stars

(e.g., Prantzos et al. 2007; Fulbright et al. 2007; Alves-Brito et al. 2010)

1. **RESULTS** 2. 3.

UV-Pumping

Excite the absorber atoms and ions to a principal quantum number above the fundamental

By a spontaneous emission, the fine structure lines of the fundamental state are populated

We find that the dust-corrected metallicity of the GRB host is [M/H] = -1.75 +/- 0.13 and DTM = 0.13 +/- 0.11

We determine the abundance pattern for each component: The deviation from the linear fits, [X/Fe]_{nucl}, are due to the effect of nucleosynthesis

We calculate the distance of the corresponding gas clouds from the GRB (~7kpc)

INPUT: -INCIDENCE FLUX -INITIAL COLUMN DENSITIES **OUTPUT:** -DISTANCE

ANDREA SACCARDI

14/09/2022

We find that the dust-corrected metallicity of the GRB host is [M/H] = -1.75 +/- 0.13 and DTM = 0.13 +/- 0.11

We determine the abundance pattern for each component: The deviation from the linear fits, [X/Fe]_{nucl}, are due to the effect of nucleosynthesis

We calculate the distance of the corresponding gas clouds from the GRB (~7kpc)

> $\rho_{\rm spearman} = 0.78^{+0.10}_{-0.10}$ $p value = 0.01^{+0.02}_{-0.01}$ Normalized density ie densit Normalized 0.40.00.5-25-40.0 Spearman coefficient $\log p$ value

1. RESULTS 2. 3. 4. A. Saccardi, S.D. Vergani, A. De Cia et al. submitted Component IV: Proper distance ? $\Delta {f v}$ [km/s] [Zn/Fe]

We find that the dust-corrected metallicity of the GRB host is [M/H] = -1.75 +/- 0.13 and DTM = 0.13 +/- 0.11

We determine the abundance pattern for each component: The deviation from the linear fits, [X/Fe]_{nucl}, are due to the effect of nucleosynthesis

We calculate the distance of the corresponding gas clouds from the GRB (~7kpc)

Different scenarios can explain the kinematics of this complex system (Galaxies merger, more clumps, more galaxies...)

> [Zn/Fe]_{fit} 0 0.51 0.51 0 0 ΔV [km/s] -255 +46 +75 -203 -136 Proper ? 17 16 11 7 Distance [kpc] -25 GRB Component V VI Π III 0 1 kpc н

FUTURE PERSPECTIVES

Credits: NASA

Credits: ESO

JWST

Credits: NASA

HST

14/09/2022

The properties of the neutral / warm gas (absorption lines)

The continuum and ionized gas (emission lines)

ANDREA SACCARDI

FUTURE PERSPECTIVES

Credits: NASA

Credits: ESO

Credits: NASA

HST

14/09/2022

HIGH REDSHIFT GRBs

FUTURE OBSERVING FACILITIES SVOM

https://www.svom.eu/

THESEUS

http://www.isdc.unige.ch/theseus

ANDREA SACCARDI

FUTURE OBSERVING FACILITIES

Payload:

-Soft X-ray Imager $(SXI, 0.3 - 5 \ keV)$ -X-Gamma rays Imaging Spectrometer (XGIS, 2 keV - 10 MeV)-InfraRed Telescope $(IRT, 0.7 - 1.8 \, \mu m)$

Ghirlanda+2015

THESEUS

VLT

ANDREA SACCARDI

	1		
י ש)			

THANKS FOR YOUR ATTENTION

Speaker ANDREA SACCARDI Observatoire de Paris - GEPI Supervisor: S.D. Vergani

V Congresso Nazionale GRB - Trieste 12-15 Settembre 2022

Saccardi et al. (submitted)

GRB210905A $Log L_{iso} = 53.27 + / - 0.7 erg s^{-1}$ $E_X = 4.1 \times 10^{51} \text{ erg}$

Using the burst luminosity and the spectral and temporal parameters, we determined a number of ionizing photons ~ 30 times higher than the GRB050730 average value

Krongold & Prochaska 2013

GRB050730 $\text{Log } L_{\text{iso}} = 51.85 + / - 0.4 \text{ erg } \text{s}^{-1}$ $E_X = 8.8 \times 10^{52}$ erg

$$\phi = \frac{E}{h} \frac{\int_{t_0}^{t_1} \int_{v_0}^{v_1} t^{-\alpha} v^{-\beta-1}}{\int_{t_0}^{t_1} \int_{v_0}^{v_1} t^{-\alpha} v^{-\beta}}$$

