On the hosts of neutron star mergers in the nearby Universe

Lorenzo Cavallo PhD student at University of Padova

GRBV+ | 12-15 September 2022 (Trieste)

The dawn of a new era

12-15 September 2022

NASA; ESA; N. Tanvir (U. Leicester), A. Levan (U. Warwick), and A. Fruchter and O.

The dawn of a new era

Lorenzo Cavallo

<u>Chemical evolution of heavy</u> <u>elements</u>

• Delay time

Matteucci et al. 2014, Cescutti et al. 2015, Côté et al. 2019; Simonetti et al. 2019; Cavallo et al. 2021

Environment
Bonetti et al. 2019, Cavallo et al.
(2022a) [submitted]

GRBV+

GRBV+

DELAY TIME

Zero-Age Main Sequence

Coalescence Kilonova + GW + GRBs

Lorenzo Cavallo

DELAY TIME

Lorenzo Cavallo

DELAY TIME

Lorenzo Cavallo

GRBV+

GRBV+

GRBV+

With this work we aim to investigate if the <u>demographic of SGRBs</u> can be used to constrain the main characteristics of the <u>delay time distribution</u> (DTD) of neutron star mergers (NSMs). To do that we first developed

MOCK UNIVERSE

composed of a sample of galaxies that fulfils major observational facts

To do that we first developed

MOCK UNIVERSE

composed of a sample of galaxies that fulfils major observational facts

Log-normal star formation history

SFR
$$(t, t_0, \tau) = \frac{1}{t\tau} e^{-\frac{(\ln t - t_0)^2}{2\tau^2}}$$

 $[t_0, \tau]$ from Abramson et al. (2016)

Lorenzo Cavallo

GRBV+

GRBV+

To do that we first developed

MOCK UNIVERSE

composed of a sample of galaxies that fulfils major observational facts

To do that we first developed

MOCK UNIVERSE

composed of a sample of galaxies that fulfils major observational facts

Star formation rate density (SFRD)

Madau & Dickinson (2014)

Mass distribution function (MDF) observed for nearby galaxies

Peng et al. (2015)

Star-forming main sequence of galaxies

Renzini & Peng (2015)

Lorenzo Cavallo

GRBV+

$$R_{NSM}(t) = k_{\alpha} \alpha_{NS} \int_{0}^{t} SFR(t-\tau) f_{NSM}(\tau) d\tau$$

Fraction of massive stars with the right characteristics to lead to a NSM

 $R_{NSM} = R_{GW}$ by Abbott et al. (2021)

 $\mathcal{R} = 320^{+490}_{-240} \, Gpc^{-3} yr^{-1}$

$D(z) = sSFR(z) \times t_U(z)$

Tacchella et al. (2022)

$$D(z) \ge 1/3 \longrightarrow$$
 Late-type
 $D(z) < 1/3 \longrightarrow$ Early-type

Fraction of NSMs in late-type galaxies

$$\frac{\mathcal{R}_{LT}(z)}{\mathcal{R}_{TOT}(z)} = f_{LT}(z)$$

Lorenzo Cavallo

Demographic of SGRBs host-galaxies constraint on the progenitors and their DTD

Fong et al. (2022) have presented a census of the 90 SGRBs observed from 2005 to 2021 that have an association with an host galaxy.

Nugent et al. (2022)

Nugent et al. (2022) used spectroscopy and optical and near-infrared photometry to characterize the stellar population properties of the host galaxies of SGRBs.

~ 85% of the population of hosts are star forming galaxies

The fraction of short-GRBs observed in late-type galaxies favors DTDs with a fair fraction of prompt events. This is supported by the relatively large fraction of short-GRBs occurring in galaxies with high star formation rate. We notice that a similar indication is obtained from chemical evolution models.

Lorenzo Cavallo

GRBV+

GRBV+