Mixing up the standard GRB classification

Andrea Rossi

INAF-OAS Bologna (Italy) on behalf of a larger collaboration

Outline

New peculiar and surprising GRBs:

1. GRB 200826A was the shortest collapsar gamma-ray burst.

2. On the opposite side, GRB 211211A is the longest merger event.

3. GRB 210905A was a rare and extremely energetic event at very high redshift

Gamma ray bursts

The burst duration shows a bimodal distribution interpreted to be (indirect) evidence of two classes of progenitors

BATSE data Kouveliotu et al. 1993

Is the simple duration an indicator of the origin of a GRB?

The 2 distributions show overlap (e.g., Horvath+02, Levesque+10)

Bromberg+11,12,13:

- The limit of 2s is valid for BATSE bursts.
 - 0.8s is more suitable for Swift BAT
 - 1.7s for FERMI GBM
- Bursts with duration ~0.5 s may be collapsar
- The shortest known to date was GRB 040924 (T90,i~1s, HETE-2)

Unveil the progenitor: a massive star

Long GRB afterglow monitoring of nearby events (z<1) enables to detect the associated SNIb/c signatures \rightarrow core-collapse star origin is confirmed!

Unveil the progenitor: a merger

Short GRB afterglow monitoring enables to detect the thermal emission ("kilonova") powered by the radioactive decay of newly formed (r-process) heavy elements in NS-NS (and possibly also in NS-BH) mergers \rightarrow in line with compact binary coalescences progenitor hypothesis

Discovery of GRB 200826A

GRB 200826A prompt emission

Rest-frame energetics

Deep NIR (rest-frame z-band) imaging in adaptive optics

The optical/NIR afterglow

See also Zhang+21, Ahumada+21, Rhodes+21

The optical/NIR afterglow

 Observed bump is too bright for a kilonova like AT2017gfo

Rossi et al., 2022, ApJ, 932, 1

See also Zhang+21, Ahumada+21, Rhodes+21

Discovery of GRB 211211A

Rastinejad et al. <u>submitted to Nature</u> <u>https://arxiv.org/abs/2204.10864</u>

Discovery of GRB 211211A

Rastinejad et al. <u>submitted to Nature</u> <u>https://arxiv.org/abs/2204.10864</u>

Afterglow and Kilonova models

Follow-up of GRB 210905A at z=6.312

See Gor talk

Frequency [Hz]

Energy [keV]

¹e+14 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 1e+21

Follow-up of GRB 210905A

Rossi et al., accepted in A&A arXiv:2202.04544

Follow-up of GRB 210905A

Rossi et al., accepted in A&A arXiv:2202.04544

Follow-up of GRB 210905A: an extremely energetic but "normal" event in the infant Universe,

Follow-up of GRB 210905A: an extremely energetic but "normal" event in the infant Universe,

Collimated parameters

Left: θ_{jet} is consistent with the median value of θ_{jet} =7.4⁺¹¹ deg at z ~ 1 (Laskar et al., 2014, 2018).

Right: GRB 210905A follows the "*Ghirlanda*" relation. GRB 210905A has the highest E_{γ} in the Konus-*Wind* catalogue.

The high energy points to a Black hole central engine

For more:

ISM abundancies, see the talk from Andrea Saccardi

KW sample Tsvetkova et al. (2017, 2021)

peak,z (keV)

ш

Summary

- Thus GRB 200826A is the shortest collapsar event known to date.
- GRB 211211A is a longest merger event known to date at 330 Mpc!
- The simple duration is NOT an indicator of the origin of a GRB.
- GRB 210905A is a extremely energetic event in the infant Universe, but otherwise normal. There is no indication for progenitors evolving with redshift. Its engine was very likely a black hole.
- The study of GRBs can still offer surprises especially thanks to new and more capable telescopes+instruments: AO (LBT, ELT), robotic telescopes (e.g. REM), X-shooter.
- Looking forward to the synergy with GW detection.

Thank you!

Discovery of GRB 211211A

Rastinejad et al. <u>submitted to Nature</u> <u>https://arxiv.org/abs/2204.10864</u>

Future scenarios

Ground-based telescopes + AO:

- Offer a sharper view of the GRB-SN location within its host.
- They can discover GRB-SNe at larger redshift.
- And at wavelengths comparable to low-redshift GRB-SN frame.

GRB 200826A prompt emission

Rest-frame energetics

The prompt properties do not allows us to unambiguously understand the progenitor of GRB 200826A

Why GRB 200826A is so short?

Tip of the iceberg effect like GRB 090426? (Moss+22) No, the amplitude parameter (F_n/F_h) is too large (Zhang+21)

Mild/no-relativistic GRB (Zhang+21, Metzger+11): Γ too low to create a long GRB

NS+WD envelope:

Thorne-Zytkow-like Object (Peng+21): can explain the X-ray shallow decay. Is the bump too bright?

Precession-oscillation (Wang+22; Gottlieb+22)

Spectral lag analysis

Distribution of the spectral lag analysis:

- We obtain a spectral lag of 96 ± 38 ms.
- The spectral lag is more typical of LGRBs.

LBT spectroscopy redshift z=0.7486

- LBT/MODS spectra at +8 days
- Detection of multiple emission lines
- [OII], H-gamma, H-beta,
 [OIII]/4959, [OIII]/5007
- at redshift of 0.7481 ±0.0003.

ZTF discovery of the afterglow of GRB 200826A.

Ahumada et al. 2021, Nature Astronomy, 5, 917

The afterglow in context

in between long and short GRBs

The LBT/MODS spectrum and SED (LBT/MODS+LBC) of the host:

- $\log M_* = 8.6 \pm 0.2 M_{sun}$
- SFR ~ 4.0 M_{sun}/yr
- sSFR~10⁻⁸ yr
- AV ~ 0.5 mag from spectra and SED
- Z=0.4 Z_{sun} consistent with LGRB hosts (Japeli+16)

It is a small, star-forming galaxy with:

- a relatively high metallicity
- a sSFR among the highest within the LGRB host population

Note: The GRB lies at a projected distance of 0.75 kpc consistent with the majority of LGRBs.

Deep NIR (rest-frame z-band) imaging in adaptive optics

- LBT+ LUCI *H*-band +~37 days ~+21days rest-frame
- Image subtraction with reference at ~160 days
- Detection!

The multi-wavelength afterglow

Self-abs. Peak from forward shock in wind-medium

GRB 200826A originated from a massive star explosion

GRB 200826A originated from a massive star explosion

