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Short GRBs
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Long GRBs

The central engine of GRBs

Magnetars: highly magnetised

(B~ 101214 G) NSs

Flares

plateau Afterglow

0.1-100 s

’ >
~ 1 hour ~ 1 day Log(t)

Magnetars are competing with BHs as source of

Usov 1992, Duncan & Thompson 1992,
Dai & Lu 1998, Zhang & Meszaros

2001, Metzger et al. 2011, ....

GRB power



Observational imprints of the magnetar

€The GRB emission A ‘. |
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Observational imprints of the magnetar

€The emission:
- X-ray plateau
- Extended emission in SGRBs

- Pre- and post-cursors in the prompt emission

€The emission associated to



Log Ly (Ts)

First evidence for magnetars: the X-ray plateau

1250 \ . Plateau phase in the X-ray afterglow
9 ’\ of LGRBs and SGRBs
104 .
el e ) | = Energy injection into the afterglow
o7k L _ lasting ~ hours
10%r 1 - Correlations between the plateau
10%F - roperties and the prompt emission
10* 0.3-10keV et N (FD)ainoE’zi et al. 2008, 2010, 2013, 2F())15) P
10’ 102 10° .10“ 10° 10°
Rest Frome time (s) Magnetar spin-down power
;Hﬁ;\% """""""""" provides a straightforward
SOp——1+ explanation of the features of the
P plateau
46} Lo I Kw? L;
' Long . sd(l) = 2 2
14} Short == (1 +2Kwity> (1 +ar)
:.S.h.o.rt.-l-.E E .............. + : Dai & Lu 1998, Zhang & Meszaros 2001, Corsi & Meszaros 2009,

1 2 3 4 5 Lyons et al. 2010, Dall’Osso et al. 2011, Metzger et al. 2011
Loo T* Bernardini et al. 2012, 2013, Rowlinson et al. 2013, 2014, Lu &
98 L« Rowlinson et al. 2014 Zhang 2014, Lu et al. 2015, Stratta et al. 2018.



First evidence for magnetars: the X-ray plateau
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+ external plateau: continuous
energy injection into the forward
shock
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Dall’Osso et al. 2011

+ internal plateau: long-lived
magnetar or collapse to BH

Dai & Lu 1998, Zhang & Meszaros 2001, Corsi & Meszaros 2009,
Lyons et al. 2010, Dall’Osso et al. 2011, Metzger et al. 2011
Bernardini et al. 2012, 2013, Rowlinson et al. 2013, 2014, Lu &
Zhang 2014, Lu et al. 2015, Stratta et al. 2018.



First evidence for magnetars: the X-ray plateau
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Log = 10493%5 P__?fl erg g1 B~1 015 G

=

ta =3 x 103B2 P25, P~1 ms

Direct estimates of B

and P from X-ray data

= Luminosity-duration correlation
Implled by the model Bemardiniet al.

2012, see also Rowlinson et al. 2014)

= B-P relation with SGRBs in the
long-period region and the
LGRBs in the opposite side (stratta et

al. 2018)

Dai & Lu 1998, Zhang & Meszaros 2001, Corsi & Meszaros 2009,
Lyons et al. 2010, Dall’Osso et al. 2011, Metzger et al. 2011
Bernardini et al. 2012, 2013, Rowlinson et al. 2013, 2014, Lu &
Zhang 2014, Lu et al. 2015, Stratta et al. 2018.



Extended Emission in SGRBs

080503
See/Sepe = 324

060614 o
SEE/S>pikc =6.11 —:05

~15% of SGRBs show an extended -
emission (EE) in the prompt phase };

(Lazzati et al. 2001, Norris & Bonnell 2006)
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Possible interpretations within the
magnetar model:

- EE + X-ray plateau: rotational
powered Wlnd (Metzger et al. 2008)

- EE: propeller mechanism (material
ejected by centrifugal forces) + X-ray
plateau: rotational powered wind

(Gompertz et al. 2014)

" 0707148 s
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Gompertz et al. 2014




The GRB prompt emission activity

Precursors Post-cursors
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iIntermittent prompt
emission activity

How to switch on and off a GRB?
Prompt emission powered by accretion onto the magnetar

Bernardini et al., 2013, 2015, see also Metzger et al., 2018
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Fall-back accretion onto magnetars

- GRB powered only by the magnetar
rotational energy through a wind
heated by neutrinos driven by the
proto-magnetar

0
X H %
‘ ’ = magnetised ultra-relativistic
i outflow

accretion allows for more complex

time evolution of the spin-down

power, possibly also for time gaps in
Metzger et al., 2018 the Ilght curve

Effects of accretion:

€additional source of energy

¢modify the magnetar parameters at birth compared to the estimates
from the late X-ray emission




Observational imprints of the magnetar

€The emission:
- X-ray plateau
- Extended emission in SGRBs

- Pre- and post-cursors in the prompt emission

€The emission associated to
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The magnetar-boosted Kilonova
GRB200522A

* The magnetar can provide an additional source

of heating in the kilonova

- Magnetar boosting claimed in the
associated to

* Imprint of the magnetar in three other SGRBs
and their associated kilonovae Gao et al., 2017)

GRB130603B

(Fong et al., 2020)
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* Possible contribution from the

magnetar in the X-ray emission
also in another SGRB with

y (Fong et al., 2014)



Can magnetars power all GRBs?

1. Magnetars have a limited energy budget (a few x 1052 erg)

= |LGRBs often above limit. However: Ricci et al. 2021
-Accretion: further energy supplier (~ 10%3 erg, e.g. parrosso et al. e
-True Ey < Eiso due to collimation —o ]
-Sufficient to energise the accompanying SN Mazzaii et al., 2014)
-Only a few LGRBs are shown to be too energetic '}\

= SGRBs often below limit: unasone.
-Radio upper limits in SGRBs rule out very energetic / \
merger ejecta icci et al., 2021)

2. Difficult for magnetars to launch ultra-relativistic jets L
(e.g. Ciolfi, 2020, see however Uzdensky & MacFadyen 2007 for LGRBs) ' Time:tlyr

3. No periodicity found in the GRB prompt emission (ichiara et ai. 2013, Guidorzi et al. 2016)
-Temporal patterns related to the magnetar may be quenched by the fireball
formation and dissipation processes

i, = 0.9 E
0.7
0.5

Flux density : F,, [uly]

Flux density : F, [uly]

4. Galactic magnetar population is not compatible with being formed within the

GRB scenario Reaetar., 2016)
= population of “super-magnetars” connected with GRBs having

“‘special" progenitors, forming NSs with higher B at birth



Constraints on the aftermath of BNS merger
- Catalog of BNS mergers by

o1 moae 2 ' | | combining BNS merger rate and NS
e e s+ s | mass distribution inferred from
|L® M8, BH+HMNS | measurements of Galactic BNSs
- ye |+ Predict the number of BNS systems
> ? *__ | ending as magnetars (stable or
= .l : 1 Supramassive NS) or BHs (formed
e ® ——  promptly or after the collapse of a
| hypermassive NS) for different EOSs
N (H4, MS1, APR4)

Hl4 Mél AP1R4
EOS - Compare these outcomes with the
observed rate of SGRBs

Patricelli & Bernardini, 2020

= for most EOSs the rate of magnetars produced after BNS
mergers iS SUfﬁCient tO power a" the SGRBS (Patricelli & Bernardini, 2020, see also

Piro et al., 2017, Margalit & Metzger, 2019)

Timescale over which differential rotation is removed has key
implication on the long-term stability of the remnant (argait et al. 2022)



The GRB central engine in the MM era
Lesson learned from GW 170817/GRB 170817A:

- The merger remnant (~2.7 Me) can be either a hyper massive NS or a BH
- Non-thermal emission:

= The X-ray flux is too low for a long-lived NS (e.g. Pooley+18, Hajela+19), @and NO
sign for long-lived central engine activity. However, if the spin-down

losses are dominated by GW emission, the contribution to the X-ray
luminosity from the magnetar is negligible (.g. parrosso+1s, Piro+19)

= The “kilonova afterglow” might be also spin down emission from a
magnetar with an unusually low magnetic field B~10° G #Hajela et al. 2021)

- Thermal emission:

= The blue component and the large mass of lanthanide-free ejecta with

Exin~1051 erg argue in favor of a HMNS collapsed to a BH in ~1s (Granot et al.

2017, Margalit & Metzger 2017, Shibata et al. 2017, Metzger et al. 2018, Rezzolla et al. 2018, Gill et al. 2019b, Ciolfi 2020,
Murguia-Berthier et al. 2020)




Direct detection of GWs from the magnetar

- Newly born proto-magnetars are source of GW if they spin fast enough
to excite dynamical (3>0.27) or secular bar-mode instabilities (3>0.14)

- Onset of dynamical instabilities at magnetar birth more likely thanks to
spin-up induced by accretion

GW signal detectable over long timescales (~ hours) and in a much
larger volume than any other isolated NS

See Dall’Osso & Stella 2021 for a general review

“Secular bar-mode instability:

in , [arb. units]
3 At210% s
o < >
S GW-driven spindown
X (halvening of fsw)
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—
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b —
o At ~ 1023 s
L EM-enhanced growth of instability
% . : . : . (fgw ~ 100 Hz = const)
0.01 0.10 1.00 10.00 100.00 1000.00 10000.00
Time (s) Dall’Osso & Stella 2021, adapted

from Corsi & Meszaros, 2009



Direct detection of GWs from the magnetar

Giacomazzo & Perna 2013
_IIII|IIII|IIII|IIII|IIII|IIII|IIII_

Long-lasting post-merger
signals are the best direct
detection to distinguish
between the formation of a

magnetar or a BH (e.g. Giacomazzo
& Perna 2012, 2013; Dall’Osso et al., 2015)

Searches in the LIGO/Virgo
data for short and
iIntermediate duration signals
in GW 170817/GRB

170817A not conclusive @obott
et al. 2017, 2019; see however Van Putten & Della

Valle 2018)

Hard to get it any time soon,
but good prospects with
3rd generation of

detectors, as the ET maggiore
et al. 2020)
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Conclusions

v Observations of GRB emission, in particular of their X-ray emission, point
towards magnetars as plausible candidates as GRB central engines

v Are all GRBs powered by magnetars?
= There are enough magnetars to power all SGRBs

= Not likely (at least not in the case of GRB 170817A!), but still the
majority are consistent with being powered by magnetars (or more
in general, by a long-lived central engine)

v Indirect evidences from GRB observations. Direct proof possible from joint
GW and EM detection of SGRBs:

= clues from GW 170817/GRB 170817A: from EM observations only, still
inconclusive

= definitive answer from direct detection of GW signal from the
remnant: one of the expected breakthrough, but hardly achievable with
the current generation detectors

= much better prospects with the 3rd generation detectors (ET, CE)






What about the prompt emission?

Byip=2%x10'°G, P,=1.5 ms
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- GRB powered only by the
magnetar rotational energy
through a wind heated by
neutrinos driven by the proto-
magnetar

= magnetised ultra-relativistic
outflow

prompt: internal shocks or
magnetic reconnection

dissipation inefficient at late
times: interaction with ISM +
spindown power
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First evidence for magnetars: the GRB plateau
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Why is the magnetar

contribution chromatic?

+attempts to model the

contribution in optical (and
predictions for the radio)

+cases of prominent

contribution observed only

in X-rays
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