The Origin of X-ray Plateaus in the Structured Jet Scenario

Stefano Ascenzi

Oganesyan, G., **SA**, Branchesi, M., Salafia, O. S., Dall'Osso, S., Ghirlanda, G., 2020, ApJ, 893, 10

SA, Oganesyan, G., Salafia, O. S., Branchesi, M., Ghirlanda, G., Dall'Osso, S., 2020, A&A, 641, 15

V Congresso Nazionale GRB - 12-15 Settembre 2022

Afterglow

- Observed from Radio to TeV
- Lasting days after the prompt emission

Open problem: the mystery of X-ray emission

Flux

Time

Open problem: the mystery of X-ray emission

X-ray afterglow emission

Kumar et al. 2008

Duration up to $\mathcal{O}(10^4 \,\mathrm{s})$

Rowlinson et al. 2013

• Abrupt or smooth decay

Chromaticity with optical

Other Features

Magnetar as GRB central engine

How is a GRB Jet?

Top Hat Jet

Structured Jet

Structured Jets Confirmed!

GRB 170817/GW 170817 afterglow

D'Avanzo et al. 2018, Dobie et al. 2018, Alexander et al. 2018, Troja et al. 2018 Top-Hat Jet Off-axis (qualitative)

Off-axis forward shock (Beniamini+ 2020)

Plateau originated by the **forward shock** (external dissipation) from a structured jet observed slightly off-axis

Two possible mechanisms:

- Off-axis emission from the core (initially beamed away) that becomes progressively visible while the jet decelerates.
- On-axis emission from portions of the jet that have not stat to decelerate yet (only for wind-like medium)

- Correlations reproduced
- Chromaticity explained assuming different position of the X-ray and optical bands with respect to the synchrotron frequencies
- Sharp drop not explained

The High Latitude Emission (HLE) Model

Kumar & Panaitescu 2000, Ap. J., 541, 2, L51-L54

The Recipe

The steep decay is the tail (in X-ray) of the **prompt emission**. The energy is released instantaneously by a curved surface in highly relativistic motion. The difference in the time of flight of photons from different regions of the emitting surface shapes the lightcurve

The Main Ingredients

- Difference in time of flight of photons
- Relativistic motion

The Assumption

- Instantaneous emission
- Spherical emitting surface
- (Power law spectrum)

The High Latitude Emission (HLE) Model

Steep Decay + Plateau

The High Latitude Emission (HLE) Model

Oganesyan, SA et al. 2020

The Assumptions

- Instantaneous emission
- Structured emitting surface
- Negligible opacity everywhere
- Observer along the jet axis
- Same spectrum everywhere

Gaussian structure $\Gamma(\theta) = 1 + (\Gamma_c - 1) \exp\left[-\frac{\theta^2}{\theta_c^2}\right]$ $\Gamma_c = 100$ 90.0* X Observer $\theta_c = 5^\circ$ 135,0 45.0 $R_0 = 10^{15} \,\mathrm{cm}$ Jet Core 12,5 10.0 7.5 2.5 5.0 180.0 × 0.01 100 10^{-1} $F_{\nu}/F_{\nu, max, on-axis}$ 10^{-2} 10-3 315.0 10-4 270.0* 10-5 Time (s) 101 103 104

Oganesyan, SA, et al. 2020

Oganesyan, **SA**, et al. 2020

Oganesyan, **SA**, et al. 2020

Comparison with Data

Oganesyan, SA, et al. 2020

Comparison with Data and the Forward Shock

Oganesyan, SA, et al. 2020

light curve, but the optical light curve is due to FS. This explains the chromaticity!

Steep Decay + Plateau

The High Latitude Emission (HLE) Model

SA, Oganesyan et al. 2020

Same Assumptions

- Structured emitting surface
- Same spectrum everywhere

Relaxed Assumptions

Instantaneous and non-

instantaneous emission

- Structured opacity
- Arbitrary observer

SA, Oganesyan et al. 2020

- Both steep decay and plateau are due to prompt emission!
- No steep decay + plateau phases
- Lower luminosity
- Later onset

- Both steep decay and plateau are due to prompt emission!
- No steep decay + plateau phases
- Lower luminosity
- Later onset

Prospect for Detection

Open Problems

- Correlations NOT tested. To explains difference in duration and luminosities, nonuniversal jet structure is required
- Our model cannot easily explain an hardening of spectrum during plateau
- Our model cannot easily explain very long duration ($> 10^4$ s) plateaus

Summary

- We proposed a model based on **High Latitude Emission** effect that predicts a softening after the steep decay, occurring when the jet is structured
- The X-ray flux is comparable to the forward shock emission (standard afterglow), while the forward shock dominates in optical. This explain the **chromaticity**
- This emission can be observed **off-axis**. Therefore, in the case of Short GRBs, it can constitute a promising electromagnetic counterpart of gravitational waves

Thank you for your attention!

Lightcurves

Oganesyan, SA, et al. 2020

Off-Axis case

Off-Axis case

SA, Oganesyan et al. 2020

SA, Oganesyan et al. 2020

Comparison with Forward-Shock

The case of GW170817

Prospect for Detection

Gravitational Wave

 $\nu_{\rm obs} = D(\theta) \nu$

 $\nu_{\rm obs} = D(\theta) \nu$

 $\nu_{\rm obs} = D(\theta) \nu$

The Spectral Evolution follows the Doppler factor evolution. When the Doppler factor decreases the spectrum softens, when the Doppler factor increases the spectrum hardens.

Spectral Evolution - Data

Panaitescu 2020

Finite Duration

Finite Duration

Opacity

$$\tau(\theta) = \frac{Y_e \sigma_T L_{\rm K,ISO}}{4\pi m_p c^3 \Gamma^2 (\Gamma - 1)(1 + \beta)} \Big[\frac{1}{R} - \frac{1}{R + \Delta R(1 + \beta) \Gamma^2} \Big]$$

Theseus

XGIS (2 keV- 20 MeV) FoV = 1.5 sr Res = 5 arcmin (2-30 keV)

> **SXI** (0.3-6 keV) FoV = 1 sr Res < 1-2 arcmin

Rates

THESEUS XGIS/SXI joint GW+EM observations			
BNS range	BNS rate (yr ⁻¹)	XGIS/sGRB rate (yr^{-1})	SXI/X-ray isotropic counterpart rate (yr ⁻¹)
~200 Mpc	~40*	~5-15	~1-3 (simultaneous) ~6-12 (+follow-up)
~15-20 Gpc	>10000	~15-35	≳100

