

The structure of jets in Gamma Ray Bursts G. Ghirlanda

Outline: 1) Collimation in GRBs 2) Structure of GRB jets

- 4) Perspectives

G. Ghirlanda - Trieste GRBV, Sept. 2022

3) Hunting for structure signatures

G. Ghirlanda - Trieste GRBV, Sept. 2022

GRB recipe

Ingredient #2: relativistic & collimated

Relativistic:

- $\tau_{\gamma\gamma,R} \sim \Gamma^{2\beta-2} \tau_{\gamma\gamma,NR}$ 1) Compactness
- 2) Proper motion and/or size expansion

Mooley+2018; *GG*+2019

Collimated:

1) Energy budget

 $E_{jet} \sim \frac{E_{\gamma,iso}\theta^2}{\eta}$

2) Afterglow jet break

Berger 2014

How they look like depends on **Intrinsic properties** and **orientation**

Viweing angle effects

Strong depression of the observed luminosity (more prompt than afterglow) for slightly off axis observers

G. Ghirlanda - Trieste GRBV, Sept. 2022

Top hat or Uniform jet: *E*, $\Gamma \mid \theta_{iet}$

GRB diversity

Uniform jet Top hat jet

GRB diversity —> Intrinsic

G. Ghirlanda - Trieste GRBV, Sept. 2022

Structured jet <u>Universal</u> jet

Strctured jet + cocoon Uniform jet + cocoon Structured cocoon

2017 Aug \rightarrow Many ...

. . .

(*Lipunov et al. 2001*) *Rossi + 2002; Zhang+ 2002*

Structured jet = Universality (only orientation matters)

Why structured jet is appealing

G. Ghirlanda - Trieste GRBV, Sept. 2022

Lu et al . 2018

Viewing angle effects: structured jet

Why do we care about jet structure?

- Expected
- Determines observable properties

Jet structure definition

G. Ghirlanda - Trieste GRBV, Sept. 2022

·It conveys information on otherwise unobservable phenomena (Jetlaunching mechanism, jet-star material interaction, central engine ...)

> $\frac{dE'}{d\Omega}(\theta,t)$ (Jet internal energy)

 $\Gamma(\theta, t)$

We care about jet structure!

G. Ghirlanda - Trieste GRBV, Sept. 2022

A Picassian view of a GRB

• Nature of the central engine Energy extraction mechanism

• Jet Head formation Forward/reverse shock • Cocoon - jet confinement effect

 Jet-cocoon breakout - free expansion • First light (shock breakout emission)

Freezing of angular structure

Prompt emission

Afterglow emission

Non-relativistic transition —> Jet structure erase

G. Ghirlanda - Trieste GRBV, Sept. 2022

Initial conditions

Angular structure

Adolescence

Gottlieb et al. 2022

PROMPT EMISSION

consistent with rather than constraining jet structure

Salafia et al. 2015, Salafia & Ghirlanda 2022

LONG GRBs

Pescalli et al. 2015, 2016; Salafia 2015; GG&Salvaterra 2022

G. Ghirlanda - Trieste GRBV, Sept. 2022

 $\theta^{-\alpha}$ with $\alpha < -4$ Or Gaussian

SHORT GRBs

Salafia & Ghirlanda 2022

G. Ghirlanda - Trieste GRBV, Sept. 2022

 $\theta^{-\alpha}$ with $\alpha < -3$

Beniamini et al. 2022

Duque et al 2022

Steep decay / plateau: S. Ascenzi talk follows

G. Ghirlanda - Trieste GRBV, Sept. 2022

1.Relativistic Jets in GRBs

2.Jet ⇔ progenitor vestige interaction ⇒ Jet structure

3.Structure ⇔ Unobservable GRB prop.

- Initial conditions
- •CE duration/enegy
- Vestige properties

4. $E(\theta)$; $\Gamma(\theta) \propto \theta^{-\alpha}$: • $\alpha > 3$ luminosity function (Pescalli et al. 2015) • $\alpha > 3 \, \text{GW} / \text{GRB170817}$ (e.g. Ghirlanda et al. 2019) • GRMHD simulations (Gottlieb et al. 2022)

G. Ghirlanda - Trieste GRBV, Sept. 2022

Conclusions

HUNTING FOR JET STRUCTURE		
Observable	Constraining power	Diff
Prompt emission		
(spectrum, spectral energy	Low	Ea
correlations, etc)		
Early Afterglow (photometry)	High	M
Late Afterglow imaging	High	Η
olarization (prompt/afterglow)	Low	Η
Populations	Medium	Ea

COMBINATION OF SEVERAL OBSERVABLES IN FEW GRBS AND/OR POPULATION STUDIES

Salafia & Ghirlanda, 2022, Galaxies, 10(5), 93 https://www.mdpi.com/2075-4434/10/5/93

BACKUP SLIDES

Salafia, Ghirlanda, Ascenzi, Ghisellini 2019

