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Gamma-ray bursts
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NARK
Gamma-ray bursts

Two (2) ““families’’ of GRBs
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GRB-SN connection

Type Ic-SNe

CC SNe from H- and He-stripped
progenitors

SN Ic (bros id lined) %
+long GRB
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lc BL SNe w/o0 GRBs

Relative number of CC-SNe

~10% of Ic-BL SNe are

“apparently”
associated with a GRB

v

What about the
remaining 90%2
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pre-SN emission

Cooling SBO emission + possible interaction with CSM
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1. As a massive star nears its end, it takes on
an onion-layer structure. At this point in its
evolution the star is hundreds of millions of
itlometers in radius; only its inner regions
shown here.

2 X 10% km

2. Iron does not undergo
nuclear fusion, so the core
becomes unable to generate
heat. The gas pressure
drops, and overlying
material suddenly rushes in.
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Neutron-
rich core

3. Within a second, the
core collapses to
nuclear density.
Inward-falling
material rebounds
off the core, setting
up an
outward-going
pressure wave.

Pressure
wave

Shock wave

Neutrino-
heated
gas bubble

Downdraft of

- " i
5. The shock wave sweeps through cool gas

the entire star, blowing it apart. ; .
S ! 4. Neutrinos pouring out of the

developing neutron star propel the
shock wave outward, unevenly.
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(courtesy
Devor, Spurio)



NARL
GRB-SN connection

* Fast-rotating Fe core
* H (and likely He) stripped-envelope progenitor
e Low metallicity (mass-loss is Z-dependent)
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NARLC
The Jet-Cocoon

= as the jet propagates within the stellar atmosphere it creates a
cocoon composed of Newtonian shocked and a mildly-relativistic
shocked jet material

= The cocoon would eventually breaks out from the star, releasing sub-
relativistic material in the circum-stellar environment

(courtesy Nakar)
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SN 2020bvc

SN2020bvc

d 1e39 SN2020bvc - Feb 28 2020 - AFOSC spectrum
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SN 2020bvc

Light curve of SN 2020bvc
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SN 2020bvc
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SN 2020bvc

Light curve of SN 2020bvc
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(Izzo+ 2020) 1.9 < y < 2.1
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SN 2020bvc

Multi-wavelength SED

Match with a GRB afterglow

SED @ Day 12.7

slow cooling
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(Sari+ 1998, Izzo+ 2020, De Colle+ 2018)
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SN 2020bvc

An off-axis GRB afterglow

Monochromatic luminosity (v =2.42 x 10'7 Hz) of Ic-BL SNe
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SN 2020bvc

An off-axis GRB afterglow

Monochromatic luminosity (v =2.42 x 10'7 Hz) of Ic-BL SNe
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Figure 1. Schematic description of the Collapsar’s jet and the cocoon. The
cocoon is composed of two components: an inner “shocked jet cocoon™ and an
outer “shocked stellar cocoon.” The jet cocoon is more dilute and hence it
expands after breakout to faster, possibly relativistic, velocities. Also shown are
the different emission components and their angular extent. A typical opening
angle of the relativistic cocoon components (if exist) is ~0.5 rad. The stellar
cocoon is sub-relativistic. As it gets out of the star it engulfs the star and its

Rest-frame time since explosion (days) emission is practically isotropic.

(Granot+ 2018, Izzo+ 2020) (Nakar & Piran 2017)
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SN 2020bvc

More detailed analysis confirm the off-axis jet nature

Data from Izzo et. al. 2020 —®—
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DARL

Summary

= jets, and then rotation, can play a fundamental role in the
processes by which massive stars explode

= jets are indeed Poynting-flux dominated and neutrino
annihilation processes are likely not adequate in driving jets and
very energetic SN explosions in general

= evidences of cocoon emission induced by the GRB jet in the Ic-
BL SN 2017iuk associated with GRB 171205A support the
existence of choked-jets in Ic-BL SNe not accompanied by GRBs

= cocoon/SN emission can also pinpoint off-axis afterglow, as
proposed (and demonstrated) for the Ic-BL SN 2020bvc
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NARK
Gamma-ray bursts

1
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The “prompt” spectrum Correlation between Epeak and Eiso

(Amati+2002, 2008)



NARK
Metallicity indicators

Nebular gas emission lines can be used as indicators for gas Z

Since Ic-BL SN progenitors have short (~10 Myr) lives, the metallicity of
the surrounding gas is a proxy for the progenitor Z

[ONINS007 ~ Ha )
HB [N 11]16583

O3N2 = log( 12 + log (O/H) = 8.743[+0.027] + 0.462[+0.024] X N2,

([N I1]16583 )

N2 = log ( — 12 + log (O/H) = 8.533[+0.012] — 0.214[+0.012] x O3N2.

y = log [NII]/[STI] + 0.264 log [NII]/Ha, 12 + log (O/H) = 8.77 + y + 0.45(y + 0.3)°

SN 2020bvc

12 + Iog(O/H) =8.16 +- 0.18 (Marino+ 2013, Dopita+ 2016)
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Shocked stellar material (SSM)

The physics of the emission from the shocked stellar material is similar
to the envelope surrounding an SN cooling after the passage of SBO
=> similarities between the two phenomena

(Nakar & Piran 2017)

Assuming canonical values for k, and considering cooling shocks
equation, we have that the SSM peaks at

—1/4p3/2243/4 172 :
tes ~ 1.2 E5 ¢ 0/ M/ hoogday Time

Les =~ 102Es) 567" R Mg g5 erg s~ Luminosity

Tos = 9000 Ed/ 2670 P Rl{* M5 * kst K Temperature

“...cocoon emission from a GRB will produce an isotropic signal a day after the event...

at an absolute magnitude ~ -16 and is dominant over the orphan afterglow...”



NARK
Shocked jet emission

In case of no complete mixing (e.g. partial or null mixing) the shocked
jet material is characterised by a relativistic and non-relativistic emission

The relativistic emission would peak at NUV frequencies ~100-1000 s
after the collapse

The newtonian emission has a shallower emission, being more isotropic,
then it should be visible in the first few days after the collapse

(Nakar & Piran 2017)



NARLC
Arnett model

Homologous expansion, spherical symmetry, constant optical
opacity, Ni & Co as energy sources.

Lsoni(t) =2 X 1043(%) [3.9¢ /i

(Kasen 2017, Arnett 1982, Valenti+ 2008)

)

+ 0.678(e "/ — ¢~t/™i)]erg s,

BVRI light curve of 2017iuk

Mejecta = 4.9 MSun
Mseni = 0.18 MSun

Ekin = 2.4 x 1052 erg




NARLC
The Jet-Cocoon

e early thermal cooling emission from X-rays to UV-opt
e velocity shocked material ~ 0.1-0.3 ¢
e significant level of mixing (no mixing, no party 1)

a b Successful jet ¢ ‘Choked’ jet
Supernova y Ray
light burst

Ejected
envelope
|

-}

Jet —Cocoon

Core enature
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GRB 171205A/SN 2017iuk

BAT Light Curve of GRB 171205A
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GRB 171205A/SN 2017iuk

rapid decay in the X-ray
afterglow emission

> very faint afterglow

anomalous behaviour in the
first day at UV-optical freqgs
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(Izzo+ 2019)
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GRB 171205A/SN 2017iuk

from near-IR to X-rays
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GRB 171205A/SN 2017iuk

Ca Il near-IR triplet

—-200000 —~150000 —~100000 —-50000
Radial velocity (km s™1)

expanding velocities for the ejecta of ~ 0.3¢
Huge KE for the cocoon -> 1051 - 1052 erg !!!
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GRB 171205A/SN 2017iuk

Spectral synthesis model (TARDIS code)

e CO138 model (1998bw)
o flat distribution at high velocities
e Fully-mixed chemical composition

SN 2017iuk evolution and modeling (Days 1-15)
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GRB 171205A/SN 2017iuk

Spectral evolution
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lc BL SNe w/o0 GRBs

GRB-SN are Ic-BL SNe, but not all type Ic-BL SNe are
associated with a GRB => no relativistic jet emission

aled f, + constant
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lc BL SNe w/o0 GRBs

radio observations of a sample of six lc-BL without GRB have revealed no
association with an off-axis jet
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Flux density(m]y)

NARL
GRB171205A @ radio

No jet break observed up to >3 years after the GRB
=> radio emission from a quasi-spherical afterglow (SBO or cocoon)

Enhancement of energy at late time in radio LC
=> energy injection from the central engine
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- early radio from cocoon

- late rise from afterglow of a jet
observed slightly off-axis
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Magnitude (AB)

Time after explosion (d, observer frame)
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WR surrounded by a CO(Ne) massive wind

Early spectra show P-Cygni of
“interacting” C Il lines

(Perley+ 2021, Gal-Yam+2022)
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