A simultaneous model fitting of GW and EM data of mergers: breaking model degeneracies in GW170817

Giulia Gianfagna,¹* Luigi Piro,¹ Francesco Pannarale,^{2,3} Hendrik Van Eerten,⁴ Fulvio Ricci,^{2,3} Geoffrey Ryan,⁵ Eleonora Troja^{6,7}

¹INAF - Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, 00133 Rome, Italy
²Dipartimento di Fisica, Università di Roma "Sapienza", Piazzale A. Moro 5, I-00185, Roma, Italy
³INFN Sezione di Roma, Piazzale A. Moro 5, I-00185, Roma, Italy
⁴Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
⁵Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada
⁶Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
⁷University of Rome Tor Vergata, Department of Physics, via della Ricerca Scientifica 1, 00100, Rome, IT

eiaps

Image credits: https://www.ligo.caltech.edu/page/press-release-gw170817

A simultaneous model fitting of GW and EM data of mergers: breaking model degeneracies in GW170817

<u>Outline</u>

- 1. GW170817
- 2. GRB 170817A
- 3. GW170817 afterglow modeling
- 4. Gravitational Waves modeling
- 5. Joint fit of gravitational and electromagnetic data
- 6. Results: GW170817
- 7. Results: GW170817, but further!
- 8. Conclusions

GW170817

- Detectable for about 100 seconds.
- Relatively close distance: 41 Mpc.
- Binary neutron stars merger.

V congresso nazionale GRB

GRB 170817A

Chandra observations Troja et al, 2017

VLBI at 4.5 GHz Mooley et al, 2017

V congresso nazionale GRB

GW170817 afterglow modeling

•Model: afterglowpy (Ryan et al, 2020)

- θ_V Jet orientation
- θ_c Opening angle of the jet
- *E*₀ Isotropic equivalent energy
- n₀ homogeneous circumburst medium number density
- θ_W Jet total width
- *p* power-law slope of the electron population
- ϵ_e fraction of post-shock internal energy in the accelerated electron population
- ϵ_B fraction of post-shock internal energy in magnetic field
- d_L luminosity distance <u>FIXED</u>

V congresso nazionale GRB

Gravitational waves modeling

1	\mathcal{M}	Chirp mass $\begin{bmatrix} m_1 \end{bmatrix}$	Mass 1 $m_1 > m_2$	
2	\boldsymbol{q}	Mass ratio $\begin{bmatrix} 0 \\ m_2 \end{bmatrix}$	Mass 2 $m_1 = m_2$	
3	<i>a</i> ₁	Spin amplitude 1	$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 m_2)^{3/5}}$	
4	a_2	Spin amplitude 2	$(m_1 + m_2)^{1/5}$	
5	$\boldsymbol{\theta}_1$	Tilt angle between the spin 1 and the orbital angular momentum	1.0	
6	θ_2	Tilt angle between the spin 2 and the orbital angular momentum		,
7	$\phi_{1,2}$	Azimuthal angle between the spin vectors	E ANA WAY INDIAN	,
8	ϕ_{jl}	Azimuthal angle between total angular momentum and orbital angular momentum	$\frac{1}{2}$ $\frac{1}$	-5
9	d_L	Luminosity distance	0.46 0.48 0.50 0.52 0.54 0.56 Time [s]	
10	DEC	Declination		
11	RA	Right ascension FIXED to NGC 4993	+ 10 calibration	
12	$\cos(\theta_{JN})$	Cosine of the inclination angle \int or $\{ \theta_{JN} \}$	Inclination angle parameters for each	
13	$oldsymbol{\psi}$	Polarization angle	detector	
14	φ	Phase		
15	Λ_1	Tidal deformability parameters of the primary neutron star or $\tilde{\Lambda}$	Dimensionless tidal parameters $\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_1^4 \Lambda_1}{(m_1 + m_2)^5}$	$n_2^4 \Lambda_2$
16	Λ_2	Tidal deformability parameters of the secondary $\delta \tilde{\Lambda}$ neutron star		

V congresso nazionale GRB

Joint fit of gravitational and electromagnetic data

Joint fit of GW and GRB data

V congresso nazionale GRB

GW170817, but further!

Conclusions

Multimessenger astrophysics provide untapped, qualitatively different and complementary types of information

- The **geometry** of the system is of fundamental importance, as it can be linked to the r-processes in the kilonova and the relativistic jet theory;
- The GW information is useful to ease the degeneracy between the jet opening angle and the viewing angle.
- Fixing the luminosity distance, for a further event GWs are fundamental to retrieve the viewing angle, but the jet opening angle remains unconstrained.

THANK YOU for your attention!

Degeneracy between distance and inclination

