Short GRBs in the multi-messenger era: situation and perspectives

Paolo D'Avanzo INAF – Osservatorio Astronomico di Brera

Credit: National Science Foundation/LIGO/Sonoma University/A. Simmonet

Gamma-ray bursts (GRBs)

Short GRBs: prompt emission

Amati et al. 2002; Younetoku et al. 2004; Ghirlanda et al. 2009, Zhang et al. 2012, D'Avanzo et al. 2014

Short GRBs: prompt (extended) emission

T₉₀ >> 2 s

Short/hard spike Long/soft tail

Short GRBs: afterglow emission

of *E*_{iso} for both long and short GRBs

GRBs

INAF ISTITUTO NAZIONALE

Swift & Short GRBs

Since 2005, with the advent of the *Swift* satellite, the discovery of short GRB afterglows and the identification of their host galaxies made possible to measure their distances and study their energy scales and environments.

To date, *Swift* detected ~160 short GRBs (~10/yr):

- ~15% with an extended emission
- ~75% with a X-ray afterglow detected
- ~15% with no X-ray afterglow detection in spite of prompt XRT slew
- ~35% with an optical afterglow detected
- ~5% with a radio afterglow detected

 ~25% with a redshift measurement (mainly from host galaxy spectroscopy -> importance of precise, arcsec, position for host galaxy association)

A lot of science cases related to short GRBs Main issue: the quest for progenitors

Compact object mergers: what we do expect

Diverse delay times:

- A mix of early and late type host galaxies

Kicks/migration from birth site:

- Offsets
- No correlation with UV/optical HG light
- Diversity in the environment (ev. channel)

No associated supernova

Remnant (magnetar/BH?)

Emission geometry (jet?)

Kilonova association

Gravitational waves

The Neutron Stars Merging Scenario

ESO PR Photo 32c/05 (October 6, 2005)

what we do expect and see (situation up to 2017)

Diverse delay times:

- A mix of early and late type host galaxies

Kicks/migration from birth site:

- Offsets
- No correlation with UV/optical HG light
- Diversity in the environment (ev. channel)

No associated supernova

Remnant (magnetar/BH?)

Emission geometry (jet?)

Kilonova association

Gravitational waves

Barthelmy+05 Malesani+07 Stratta+07 PDA+09 Fong+13 Berger14

INAF

ISTITUTO NAZIONALI

Short GRBs Long GRBs C C SNo

Type la SNe

Asquini+19

what we do expect and see (situation up to 2017)

what we do expect and see (situation up to 2017)

Diverse delay times:

- A mix of early and late type host galaxies

Kicks/migration from birth site:

- Offsets
- No correlation with UV/optical HG light
- Diversity in the environment (ev. channel)

No associated supernova

Remnant (magnetar/BH?)

Emission geometry (jet?)

Kilonova association

what we do expect and see (situation up to 2017)

what we do expect and see (situation up to 2017)

Diverse delay times:

- A mix of early and late type host galaxies

Kicks/migration from birth site:

- Offsets
- No correlation with UV/optical HG light
- Diversity in the environment (ev. channel)

No associated supernova

Remnant (magnetar/BH?)

Emission geometry (jet?) Kilonova association

what we do expect and see (situation up to 2017)

Diverse delay times:

- A mix of early and late type host galaxies

Kicks/migration from birth site:

- Offsets
- No correlation with UV/optical HG light
- Diversity in the environment (ev. channel)

No associated supernova

Remnant (magnetar/BH?)

Emission geometry (jet?)

Kilonova association

what we do expect and see (situation up to 2017)

Diverse delay times:

- A mix of early and late type host galaxies

Kicks/migration from birth site:

- Offsets
- No correlation with UV/optical HG light
- Diversity in the environment (ev. channel)

No associated supernova

Remnant (magnetar/BH?)

Emission geometry (jet?)

Kilonova association

Compact object mergers: what we do expect and see

Diverse delay times:

- A mix of early and late type host galaxies

Kicks/migration from birth site:

- Offsets
- No correlation with UV/optical HG light
- Diversity in the environment (ev. channel)

No associated supernova

Remnant (magnetar/BH?)

Emission geometry (jet?)

Kilonova association

Gravitational waves

The Neutron Stars Merging Scenario

ESO PR Photo 32c/05 (October 6, 2005)

NS-NS / NS-BH electromagnetic counterparts

NS-NS / NS-BH electromagnetic counterparts

Kilonova $M = 10^{-2} M_{\odot}, v_0 = 0.1 c$ $M = 10^{-2} M_{\odot}, v_0 = 0.1 c$ 20 Lanthanide "Red" Kilonova Lanthanide-Free "Blue" Kilonova 22 22 arnes+16 200 Mpc 200 Mpc 24 0 0 26 26 M_{AB} M_{AB} 28 28 30 0.1 0.1 10 10 1 Time (Days) Time (Days)

A key signature of an NS–NS/NS–BH binary merger is the production of a so-called "kilonova" (aka "macronova") due to the decay of heavy radioactive species produced by the *r*-process and ejected during the merger that is expected to provide a source of heating and radiation (Li and Paczynski 1998; Rosswog, 2005; Metzger et al., 2010).

Abbott+17; Goldstein+17; Savchenko+17

GW 170817 / GRB 170817A / AT2017gfo 🧲

INAF

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

GW 170817 / AT2017gfo

GW 170817 / AT2017gfo

Soares-Santos+17; Tanvir+17; Valenti+17 and many others)

GW 170817 / AT2017gfo

Soares-Santos+17; Tanvir+17; Valenti+17 and many others)

Covino et al., 2017

Full characterization of the KN properties

detection of the afterglow at the peak

The radio afterglow is detected with an angular size < 2 mas in VLBI data obtained ~ 207 d after the merger. Evidence for superluminal motion is also found measuring an angular offset between T+75 d and T+235 d.

C Successful jet of of simulated image + real nois -23°22'53.38' G 53.39" 53,40' D Choked jet cocoon E Choked jet cocoon nulated image + real nois -23°22'53 38 G 53.39" 53.40" 48.0685s 48.0685s 48.0680 13h09m48.0695s 48.0690s RA Ghirlanda+17[™]

The radio afterglow is detected with an angular size < 2 mas in VLBI data obtained ~ 207 d after the merger. Evidence for superluminal motion is also found measuring an angular offset between T+75 d and T+235 d.

These findings, together with the afterglow light curve modelling, support the structured jet model. Fit to the data and numerical simulations are in agreement with the scenario of a structured jet with a relativistic core with $\theta_{iet} < 5 \text{ deg and } \theta_{view} \sim 20 \text{ deg.}$

Alexander+17,18; PDA+18; Dobie+18; Fong+19; Haggard+17; Hallinan+17; Hajela+19; Margutti+17,18; Mooley+18a,b; Reasmi+18; Ruan+18; Troja+18a,b, 19,20; Ghirlanda+19; Piro+19; Margutti & Chornock 21 and many others

GRB 170817A: a puzzling late time emission 🔎 INAF

KN afterglow?

Accretion on compact remnant?

Magnetar?

GRB 170817A: a puzzling late time emission 🔎 INAF

GRB 170817A: a puzzling late time emission 🔎 INAF

Waiting for O4 (Spring 2023)

Observation run	Network	Expected BNS detections	Expected NSBH detections	Expected BBH detections	
03	HLV	1^{+12}_{-1}	0^{+19}_{-0}	17^{+22}_{-11}	
•O4	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79^{+89}_{-44}	
		Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	
03	HLV	270_{-20}^{+34}	330_{-31}^{+24}	280^{+30}_{-23}	
•O4	HLVK	33^{+5}_{-5}	50^{+8}_{-8}	41^{+7}_{-6}	
		Comoving volume (10^3 Mpc^3) 90% c.r.	Comoving volume (10^3 Mpc^3) 90% c.r.	Comoving volume (10^3 Mpc^3) 90% c.r.	
03	HLV	120^{+19}_{-24}	860^{+150}_{-150}	16000^{+2200}_{-2500}	
►O4	HLVK	52^{+10}_{-9}	$430\substack{+100 \\ -78}$	$7700\substack{+1500\\-920}$	

Abbott+20 (LRR)

Prospects for joint GW – e.m. detection of BNS in O4

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **513**, 4159–4168 (2022) Advance Access publication 2022 April 28 https://doi.org/10.1093/mnras/stac1167

Prospects for multimessenger detection of binary neutron star mergers in the fourth LIGO–Virgo–KAGRA observing run

Barbara Patricelli,^{1,2,3,4}* Maria Grazia Bernardini,⁵* Michela Mapelli,^{6,7,8} Paolo D'Avanzo,⁵ Filippo Santoliquido ^(a),^{6,7} Giancarlo Cella,³ Massimiliano Razzano^{1,3} and Elena Cuoco ^(a),^{2,3,9}

Model			GW+EM (prompt)								
			Swift/BAT		<i>Fermi/</i> GBM		INTEGRAL/IBIS		SVOM/ECLAIRs		
	$\mathcal{R}(0)$	GW	Uniform	Structured	Uniform	Structured	Uniform	Structured	Uniform	Structured	
	$(\mathrm{Gpc}^{-3} \mathrm{yr}^{-1})$	(yr^{-1})	(yr^{-1})	(yr^{-1})	(yr^{-1})	(yr^{-1})	(yr^{-1})	(yr^{-1})	(yr^{-1})	(yr^{-1})	
A1	31	5	0.002 (0.01)	0.05-0.08	0.014 (0.06)	0.27-0.46	0.0005 (0.002)	0.009–0.014	0.002 (0.008)	0.05-0.07	
A3	258	22	0.01 (0.04)	0.24-0.37	0.06 (0.26)	1.17 - 2.00	0.002 (0.008)	0.04-0.06	0.009 (0.04)	0.22-0.32	
A7	765	61	0.03 (0.12)	0.67 - 1.05	0.18 (0.74)	3.28-5.65	0.006 (0.02)	0.11-0.18	0.02 (0.10)	0.63-0.90	

In the meanwhile: many SGRBs/KNe

THE ASTROPHYSICAL JOURNAL, 932:1 (15pp), 2022 June 10

© 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

The Peculiar Short-duration GRB 200826A and Its Supernova^{*}

A. Rossi¹^(b), B. Rothberg^{2,3}^(b), E. Palazzi¹^(b), D. A. Kann⁴^(b), P. D'Avanzo⁵, L. Amati¹^(b), S. Klose⁶^(b), A. Perego^{7,8}^(b), E. Pian¹^(b), C. Guidorzi^{1,9,10}^(b), A. S. Pozanenko^{11,12,13}^(b), S. Savaglio¹⁴, G. Stratta^{1,15,16}, G. Agapito¹⁷^(b), S. Covino⁵^(b), F. Cusano¹^(b), V. D'Elia^{18,19}^(b), M. De Pasquale^{20,21}, M. Della Valle²²^(b), O. Kuhn², L. Izzo²³, E. Loffredo^{24,25}, N. Masetti^{1,26}^(b), A. Melandri⁵^(b), P. Y. Minaev^{11,12,27}, A. Nicuesa Guelbenzu⁶^(b), D. Paris¹⁹^(b), S. Paiano^{19,28,29}^(b), C. Plantet¹⁷^(b), F. Rossi¹⁷^(b), R. Salvaterra²⁹^(b), S. Schulze³⁰, C. Veillet², and A. A. Volnova¹¹

see also Ahumada+21

The First Short GRB Millimeter Afterglow: The Wide-Angled Jet of the Extremely Energetic SGRB 211106A

TANMOY LASKAR,¹ ALICIA ROUCO ESCORIAL,² GENEVIEVE SCHROEDER,² WEN-FAI FONG,² EDO BERGER,³ PÉTER VERES,⁴ SHIVANI BHANDARI,^{5, 6, 7} JILLIAN RASTINEJAD,² CHARLES D. KILPATRICK,² AARON TOHUVAVOHU,⁸ RAFFAELLA MARGUTTI,⁹ KATE D. ALEXANDER,² JAMES DELAUNAY,^{10, 11, 12} JAMIE A. KENNEA,¹³ ANYA NUGENT,² K. PATERSON,¹⁴ AND PETER K. G. WILLIAMS^{3, 15}

GRB 211106A: VLT host galaxy detection and early-time afterglow & KN limits (Ferro et al., in preparation)

The First Short GRB Millimeter Afterglow: The Wide-Angled Jet of the Extremely Energetic SGRB 211106A

TANMOY LASKAR,¹ ALICIA ROUCO ESCORIAL,² GENEVIEVE SCHROEDER,² WEN-FAI FONG,² EDO BERGER,³ PÉTER VERES,⁴ SHIVANI BHANDARI,^{5,6,7} JILLIAN RASTINEJAD,² CHARLES D. KILPATRICK,² AARON TOHUVAVOHU,⁸ RAFFAELLA MARGUTTI,⁹ KATE D. ALEXANDER,² JAMES DELAUNAY,^{10,11,12} JAMIE A. KENNEA,¹³ ANYA NUGENT,² K. PATERSON,¹⁴ AND PETER K. G. WILLIAMS^{3,15}

ESO-VLT faint host galaxy detection; $R_{HG} \sim 26.5 \text{ mag}$ (d)

ESO-VLT: $T-T_0 \sim 2.9$, 5.9, 27.9 d limits on afterglow / KN: R > 26.8 mag

A Kilonova Following a Long-Duration Gamma-Ray Burst at 350 Mpc

Jillian Rastinejad^{1*}, Benjamin P. Gompertz², Andrew J. Levan³, Wen-fai Fong¹, Matt Nicholl², Gavin P. Lamb⁴, Daniele B. Malesani^{3,5,6}, Anya E. Nugent¹, Samantha R. Oates², Nial R. Tanvir⁴, Antonio de Ugarte Postigo⁷, Charles D. Kilpatrick¹, Christopher J. Moore², Brian D. Metzger^{8,9}, Maria Edvige Ravasio^{3,10}, Andrea Rossi, Genevieve Schroeder¹, Jacob Jencson¹², David J. Sand¹², Nathan Smith¹², José Feliciano Agüí Fernández¹³, Edo Berger¹⁴, Peter K. Blanchard¹, Ryan Chornock¹⁵, Bethany E. Cobb¹⁶, Massimiliano De Pasquale¹⁷, Johan P. U. Fynbo^{5,6}, Luca Izzo¹⁸, D. Alexander Kann¹³, Tanmoy Laskar³, Ester Marini¹⁹, Kerry Paterson^{1,20}, Alicia Rouco Escorial¹, Huei M. Sears¹ and Christina C. Thöne²¹

GeV emission from a compact binary merger

Alessio Mei^{1,2*}, Biswajit Banerjee^{1,2}, Gor Oganesyan^{1,2}, Om Sharan Salafia^{3,6}, Stefano Giarratana^{4,5}, Marica Branchesi^{1,2}, Paolo D'Avanzo⁶, Sergio Campana⁶, Giancarlo Ghirlanda^{3,6}, Samuele Ronchini^{1,2}, Amit Shukla⁷ and Pawan

THE ASTROPHYSICAL JOURNAL LETTERS, 931:L23 (9pp), 2022 June 1

© 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

INAF

GRB 211227A as a Peculiar Long Gamma-Ray Burst from a Compact Star Merger

Hou-Jun Lü¹, Hao-Yu Yuan¹, Ting-Feng Yi², Xiang-Gao Wang¹, You-Dong Hu³, Yong Yuan⁴, Jared Rice⁵, Jian-Guo Wang⁶, Jia-Xin Cao¹, De-Feng Kong¹, Emilio Fernandez-García³, Alberto J. Castro-Tirado^{3,7}, Ji-Shun Lian¹, Wen-Pei Gan¹, Shan-Qin Wang¹, Li-Ping Xin⁸, M. D. Caballero-García³, Yu-Feng Fan⁶, and En-Wei Liang¹

GRB 220831A

- detected by Fermi/GBM e Swift/BAT-GUANO

- T₉₀ ~ 1.7 s

- close to NGC 625 ($D_L \sim 4$ Mpc; 30 kpc offset in projection)

 possible color evolution of the optical/ NIR counterpart (r – J > 2 mag at late time)

The SBAT4 sample

A sub-sample of Swift SGRBS with:

- prompt XRT observation (no need for a X-ray detection)
- *A_V* < 0.5 mag
- $-P_{64} > 3.5 \, ph/s/cm^2$ (15-150 kev)

The SBAT4 sample

A sub-sample of Swift SGRBS with:

- prompt XRT observation (no need for a X-ray detection)
- *A_v* < 0.5 mag
- $-P_{64} > 3.5 \, ph/s/cm^2$ (15-150 kev)

(Nov 2004 – Jun 2013)

16 SGRBs, 11 with redshift (~70%)

The SBAT4 sample

The extended SBAT4 sample

The sample almost doubled its size w.r.t. the one presented in 2014 A useful and powerful tool to study SGRB properties

Conclusions & Future

• The knowledge of SGRBs experienced an impressive boost in the past two decades. After the recent major breakthroughs, we now have direct evidence for:

- the NS-NS / SGRB association
- the existence of NS-BH systems (from GWs)
- SGRB outflows shaped as structured jets
- off-axis afterglow emission
- the existence of r-process kilonovae and their association with SGRBs
- The search for SGRB/KN events (old and new events) looks promising
- No good events in O3, waiting for O4
- Still a number of open issues:
 - can NS-BH power SGRBs?
 - what is the origin of the blue KN component?
 - are KNe associated to every short GRB?
 - how to unveil the nature of the NS-NS remnant?
 - GeV emission from GRB 211211A?
 - how to identify genuine short (i.e. merger-driven) GRBs?
 - (...)

We are at the dawn of a new, exciting, promising, era for (multi-messenger) studies of SGRBs. No doubt that there is a lot of attention, efforts, planning, expectations from the community.

