

GEV EMISSION FROM A COMPACT BINARY MERGER

A. Mei, B. Banerjee, G. Oganesyan, O. S. Salafia, S. Giarratana, M. Branchesi, P. D'Avanzo, S. Campana, G. Ghirlanda, S. Ronchini, A. Shukla, P. Tiwari

Istituto Nazionale di Fisica Nucleare

(Gompertz+ 2022)

- On Dec. 11, 2021 a bright gamma-ray emission triggered Fermi/GBM (10 keV -40 MeV) and Swift/BAT (15-150 keV).
- The duration of the prompt emission of this GRB is $T_{90} \simeq 34$ s
- Presence of a softer extended emission at later times (up to ~ 60 s)

Long duration GRB!

- Extensive follow-up campaign from radio to high energies (HE, 100 MeV - 10 GeV)
- We joined the follow-up effort with XMM-Newton (X-rays, 0.5-10 keV) and VLA (radio, 3-10 GHz)
- ~ 5 arcsec (~8 kpc in projection) offset • from the closest galaxy (z=0.076).

Hubble deep observations confirmed the redshift of this source (Rastinejad+ 2022)

Long -> Collapsar -> near -> supernova

Where is the supernova?

GRB-V, Trieste

4

The turning point: Kilonova detection

Three-component kilonova fit

• $M_{ei} = 0.04 \pm 0.02 M_{\odot}$, almost all lanthaniderich, in reasonable agreement with at2017gfo.

• $v_{ei} \simeq 0.25 - 0.3 c$

Associated to compact object merger in a • binary system, likely BNS

Likelihood ratio test (LRT)

Alessio Mei

Source detection with Fermi/LAT

TS = $-2\log\left(\frac{\mathscr{L}_0}{\mathscr{L}_1}\right) \approx (\text{detection significance})^2$

- We define a Region of Interest (ROI) of 12 deg around the GRB position.
- We account for the isotropic particle bkg, galactic and extragalactic high energy components from Fermi 4th catalog (F4GL).
- We assume a PL spectral model for the GRB as well as for the other sources in the ROI, the latter with fixed normalisation and spectral index.
- We assess the improvement of the fit following the introduction of the GRB in the model through LRT.

Energy (GeV)	Probability	Distance $(deg.)$	Arrival tir
0.21	0.94	0.36	6438
0.19	0.95	1.04	6647
0.16	0.93	1.34	12493
0.12	0.96	0.71	12612
1.74	0.97	0.32	12966
0.10	0.96	0.77	13053
0.12	0.92	1.69	13292
0.29	0.91	1.22	17860
0.23	0.97	0.67	1812

HE photons from the GRB

- <u>Standard criteria for GRB detection</u>: at least 3 photons associated to the GRB with probability p > 0.9
- We observe 9 photons with probability p > 0.9 to be emitted by the GRB.
- The highest energy photon is detected after 13 ks with energy ~1.5 GeV.

(Mei et al. 2022, under review Nature)

(a) t_0 -1 d to t_0

(b) t_0 to $t_0 + 20$ ks

(c) t_0+1 d to t_0+2 d

HE emission at late times

GRB-V, Trieste

Fermi 10-year Source Catalog (4FGL)

Ruling out contaminations from the bkg

GRB-V, Trieste

2nd Fermi/LAT GRB catalog (Ajello+2019)

- GRB 211211A is intrinsically faint in the LAT energy band ($L_{iso} \sim 10^{46} \text{ erg/s}$).
- It is observable thanks to its proximity to Earth! (~350 Mpc)
- No other GRB with $d \leq 350$ Mpc shows significant LAT emission.
- GRB 170817A would be a good candidate, but no LAT observation due to South Atlantic Anomaly before 1ks, while after 1ks there is no detection (TS<9).

HE excess at late time

Light curve

Alessio Mei

Spectra (SED)

GRB-V, Trieste

Low power jet-KN EIC

De-beamed scenario $(R_i > R_{KN})$

Credits: S. Ronchini

- •
- This scenario requires a low, but reasonable, jet magnetisation $(\epsilon_B \lesssim 8 \times 10^{-6})$

If the **hot electrons** are **above** the kilonova photosphere, the photons are **de-beamed** in the jet comoving frame.

This scenario requires an unrealistically low jet magnetisation ($\epsilon_R \leq 3 \times 10^{-10}$)

• If the hot electrons are **below** the kilonova photosphere, the photons are **beamed** in the jet comoving frame.

Low power jet-KN interaction

GRB-V, Trieste

External Inverse Compton component

Light curve

Spectra (SED)

GRB-V, Trieste

- emission, by the merger of two Neutron Stars.
- external shock-accelerated electrons.
- interaction between the optical Kilonova photons and the hot electrons accelerated in a low-power jet.
- counterparts, possibly detectable at late times in the high energy band!

• GRB 211211A is a bright long GRB likely produced, together with a kilonova

• We have observed for the first time a late GeV emission coming from a compact binary merger, in clear excess with respect to the synchrotron emission from

We show that such emission can be matched by External Inverse Compton

This discovery opens a new observational channel for GRBs, Kilonovae, and GW

GRB-V, Trieste

The fireball model

 $E \sim 10^{51-54} \text{ erg}$ $\Gamma \gtrsim 100$

> Colliding shells emit gamma rays (internal shock wave model)

> > ~

Black hole engine

Prompt emission after $\sim 1 - 2$ s

Slower

shell

Faster

shell

low-energy (< 0.1 GeV) to high-energy (to 100 GeV) gamma rays

HE excess at late time

Light curve

Spectra (SED)

Comparison with other LAT GRBs

GRB-V, Trieste

Comparison with other LAT GRBs

