VERY HIGH ENERGY EMISSION FROM GAMMA-RAY BURSTS WITH THE MAGIC TELESCOPES

Davide Miceli (University & INFN Padova)

On behalf of the MAGIC Collaboration

V Congresso Nazionale GRB 2022, 13/09/2022

The MAGIC Collaboration

The MAGIC Collaboration

Credit: ESA/Copernicus Sentinel-2

The MAGIC telescopes

- Stereoscopic system of two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACT)
- Indirect detection of γ-rays
- Energy range: 50 GeV ~ 50 TeV
- Atmospheric transmission evaluated by the LIDAR system

4

The MAGIC telescopes

- Suitable instruments for GRB follow-ups:
 - low energy threshold (~ 50 GeV or lower with SumTrigger)
 - automatic alert system and fast repositioning (~7deg/s)
 - observations in non-standard conditions (moon time, high zenith angles)

The MAGIC telescopes

- ~ I 40 GRBs observed since 2005
- 2 detections (> 5σ excess): GRB190114C, GRB201216C
- 2 hints of detection (\gtrsim 3 σ excess): GRB160821B and GRB201015A

GRBI90114C

- Long GRB
- $E_{\gamma,iso} \sim 2.5 \times 10^{53} \text{ erg}$
- z = 0.42

MAGIC detection info:

- T_{delay} ~ 57 s
- > 50σ in 20 minutes
- detection up to 40 min
- 0.3 I TeV energy range
- moon conditions and Zd>50

MAGIC Coll. et al., 2019

GRBI90114C

Modeling of GRBI90114C

Observed No γ - γ opacity EBL-deabsorbed

MAGIC soft spectrum:

- Klein-Nishina
- γ - γ internal absorption

GRB afterglow parameters: $E_k \gtrsim 3 \times 10^{53}$ erg $\varepsilon_e \approx 0.05$ -0.15 $\varepsilon_b \approx 0.05$ -1 $\times 10^{-3}$ $n \approx 0.5$ -5 cm⁻³ $p \approx 2.4$ -2.6

MAGIC Coll. et al., 2019

GRBI90114C: impact on other physics

Lorentz Invariance Violation (LIV) studies

From the GRB 190114C data we got the following 95% lower limits on the Q.G. energy scale

	superl.	subl.	95% lower limit on the Q.G. energy scale for
$E_{\rm QG,1} [10^{19} {\rm GeV}]$	0.55	0.58	linear scenario
$E_{\rm QG,2} [10^{10} {\rm GeV}]$	5.6	6.3	🛶 quadratic scenario

COMPARISON WITH PREVIOUS LIMITS

Source	Source type	Redshift	$E_{ m QG,1} \ [10^{19} \ { m GeV}]$	$E_{ m QG,2} \ [10^{10} { m GeV}]$	Instrument	_
GRB 090510	GRB	0.9	9.3	13	Fermi-LAT ¹	_
GRB 190114C	GRB	0.42	0.58	6.3	MAGIC	this work
PKS 2155-304	AGN	0.116	0.21	6.4	H.E.S.S. ²	
Mrk 501	AGN	0.034	0.036	8.5	H.E.S.S. ³	¹ Vasilei
Mrk 501	AGN	0.034	0.021	2.6	MAGIC ⁴	
Mrk 421	AGN	0.031	pending	pending	MAGIC	⁻ Abram
Crab Pulsar	Pulsar	2.0 kpc	0.055	5.9	MAGIC ⁵	³ Abdall
						4 Albert

 $\overline{E_{Pl}} \sim 1.2 \cdot 10^{19} \text{ GeV}$

¹ Vasileiou+ (2013)
 ² Abramowski+ (2011)
 ³ Abdalla+ (2019)
 ⁴ Albert+ (2008)
 ⁵ Ahnen+ (2017)

InterGalactic Magnetic Field (IGMF) studies

D'Amico, ICRC2021

GRB201216C

- Long GRB
- $E_{\gamma,iso} \sim 4.7 \times 10^{53} \text{ erg}$ • z = 1.1

MAGIC detection info:

- Tdelay ~ 56 s
- 6σ in 20 minutes
- 0.1 ? TeV energy range

GRBI60821B (3σ excess)

- short GRB
- $E_{\gamma,iso} \sim 1.2 \times 10^{49} \text{ erg}$
- z = 0.162

MAGIC info:

- Tdelay ~ 24 s
- 3σ in 4 hrs
- 0.5 5 TeV energy range
- moon conditions, dedicated analysis

GRB201015A (> 3σ excess)

- long GRB
- $E_{\gamma,iso} \sim 1.1 \times 10^{50} \text{ erg}$
- z = 0.426

MAGIC info:

- Tdelay ~ 33 s
- 3.5σ in 3.4 hrs
- 0.14 ? TeV energy range

Population of GRBs at VHE

Nava, 2021

MAGIC Upper Limit (UL) catalog

Conclusions

- MAGIC demonstrates current generation IACTs are able to detect GRB afterglow emission
 - Hardware and software upgrades played a crucial role
 - alert system and fast repointing (but also late-time follow-up)
 - observations in non-standard conditions (moon, bad weather, high zenith angles)
- Broad GRB intrinsic properties: VHE emission may be present in a larger sample of GRBs
 → we are ready to catch it to enlarge VHE GRB population
- 160821B is a promising hint for short GRBs
- MWL data and synergies with other instruments are crucial

Future challenges

- Nature and properties of afterglow emission still debated (SSC/sync, external medium, microphysics parameters)
- VHE emission in prompt phase
- VHE from short GRBs, connection with GW searches (O4 starting in March 2023)
- Explore new physics field with GRBs (LIV, IGMF, EBL)
- Future generation instruments (LSTs, CTA) will increase VHE GRB detections
- Upcoming papers: GRB201216C, GRB201015A and UL GRB catalog

BACKUP

Afterglow: the external forward shock scenario

Afterglow: the external forward shock scenario

Relativistic shocks in GRB afterglow **Interstellar Medium Shocked Interstellar Medium** n **Ν(γ) Forward shock** Ym Yc $u' = (Γ - 1)n'm_pc^2$ $u'_e = \xi < \gamma > m_e c^2 n'$ $\mathbf{u'}_{e} = \boldsymbol{\epsilon}_{e}\mathbf{u'} \quad \mathbf{u'}_{P} = \boldsymbol{\epsilon}_{P}\mathbf{u'}$ $u'_B = \varepsilon_B u' = B^2/8\pi$

GRBI90114C: Timeline

