GAMMA-RAY BURSTS AT THE HIGHEST ENERGIES

Lara Nava

INAF

Osservatorio Astronomico di Brera

13 SEPT 2022

GRB-V

TeV detections: a summary

Miceli D. & Nava L., 2022, Galaxies, 10, 66

	<i>T</i> ₉₀ s	$E_{\gamma,iso} \ { m erg}$	Z	T _{delay} s	E _{range} TeV	IACT (sign.)
160821B	0.48	$1.2 imes 10^{49}$	0.162	24	0.5-5	MAGIC (3.1σ)
180720B	48.9	$6.0 imes 10^{53}$	0.654	3.64×10^{4}	0.1-0.44	H.E.S.S. (5.3 <i>σ</i>)
190114C	362	$2.5 imes 10^{53}$	0.424	57	0.3-1	MAGIC (> 50σ)
190829A	58.2	$2.0 imes10^{50}$	0.079	1.55×10^{4}	0.18-3.3	H.E.S.S. (21.7 <i>σ</i>)
201015A	9.78	$1.1 imes10^{50}$	0.42	33	0.14	MAGIC (3.5σ)
201216C	48	$4.7 imes 10^{53}$	1.1	56	0.1	MAGIC (6.0 σ)

significance < 5σ

significance > 5σ

GRB EMISSION AT ENERGIES **E** < **G**EV

- keV MeV
- Non-thermal
- Origin still uncertain
- One single spectral component

GRB EMISSION AT ENERGIES E < GEV and M.E.Ravasio

- keV MeV
- Non-thermal
- Origin still uncertain
- One single spectral component

GRB EMISSION AT ENERGIES **E** < **G**EV

- keV MeV
- Non-thermal
- Origin still uncertain
- One single spectral component

Prompt emission

 photons > 1 GeV have been detected during the prompt (green symbols)

- photons > 1 GeV have been detected during the prompt (green symbols)
- extra-component in spectra?? (no clear evidence)

 10^{2}

Prompt emission

Photon energy [GeV] 00 10 photons > 1 GeV have been detected during the prompt (green symbols) • extra-component in spectra?? (no clear evidence) • evidence for GeV / multi-GeV variability? 10 10^{0} 10^{1} Photon arrival time [s] Ackermann et al., 2011 Ajello et, al Period 1 Period 2 Period 3 10^{-3} **GRB 090926A** 2019 _10_ 10_ ξ_{10⁻¹} Ε_{10⁻⁶} 10 rF_v (erg/cm²/s) **GRB 131108A** E I0⁻⁷ a]: 0.0 s - 3.3 s (Band LAT Energy Flux (100 MeV - 10 GeV) - 10 5 s (Band + CUTP) GBM Energy Flux x 10 (10 keV - 10 MeV) 10.5 s – 21.6 s (Band + Pl 10^{-9} χ^2 / dof = 20.8 / 34 10-10³ 10⁵ 10⁶ 10 10 10 100 101 10² Energy (keV) Time since GBM triggered [s]

Nava 2018

 \bigcirc

Afterglow emission

Afterglow emission

• Extra-component in spectra?? (no clear evidence)

V CONGRESSO NAZIONALE GRB

LARA NAVA - INAF

Afterglow emission

- Extra-component in spectra?? (no clear evidence)
- Photons with E>Emax,syn: revision of afterglow shock physics required (Kouveliotou et al 2013)? B-field decay (e.g., Kumar et al., 2012)?

Afterglow emission

- Extra-component in spectra?? (no clear evidence)
- Photons with E>Emax,syn: revision of afterglow shock physics required (Kouveliotou et al 2013)? B-field decay (e.g., Kumar et al., 2012)?

Afterglow emission

- Extra-component in spectra?? (no clear evidence)
- Photons with E>Emax,syn: revision of afterglow shock physics required (Kouveliotou et al 2013)? B-field decay (e.g., Kumar et al., 2012)?

OBSERVATIONS AT TEV ENERGIES: CHERENKOV TELESCOPES

V CONGRESSO NAZIONALE GRB

LARA NAVA - INAF

TEV OBSERVATIONS: CHERENKOV TELESCOPES

MAGIC / HESS / VERITAS

- Number of observed GRBs:
 hundreds
- Low energy threshold:
 50 / 50 / 100 GeV
- Time delay:
 - ▶ < 100 s / 100-1000 s

until 2019: no detections, only upper limits –

TEV OBSERVATIONS: CHERENKOV TELESCOPES

MAGIC / HESS / VERITAS

- Number of observed GRBs:
 hundreds
- Low energy threshold:
 50 / 50 / 100 GeV
- Time delay:
 - ▶ < 100 s / 100-1000 s

until 2019: no detections, only upper limits –

- Long GRB
- *z* = 0.42
- *E*_{prompt} = 2.5x10⁵³erg

MAGIC detection

- 1-40 minutes after the GRB
- in the energy range 0.3-1 TeV

- Long GRB
- *z* = 0.42
- $E_{prompt} = 2.5 \times 10^{53} \text{erg}$

MAGIC detection

- 1-40 minutes after the GRB
- in the energy range 0.3-1 TeV

Light curve and SED modeling

H.E.S.S. DETECTION OF GRB 180720B

H.E.S.S. DETECTION OF GRB 190829A

H.E.S.S. DETECTION OF GRB 190829A

H.E.S.S. DETECTION OF GRB 190829A

- Long GRB
- *z* = 1.1
- $E_{prompt} = 5 \times 10^{53} \text{ erg}$
- 57 seconds after the prompt
- Significance of detection ~ 6 sigma

SHORT GRB 160821B

- $rac{1}{r} z = 0.16$
- Kilonova emission
- MAGIC: excess ~3 sigma

CTA - CHERENKOV TELESCOPE ARRAY

Consortium paper on prospects for CTA observations of GRB in preparation

CTA - CHERENKOV TELESCOPE ARRAY

Consortium paper on prospects for CTA observations of GRB in preparation

CTA - CHERENKOV TELESCOPE ARRAY

Consortium paper on prospects for CTA observations of GRB in preparation

ASTRI MINI-ARRAY

SIMULATIONS

- 190114C as a template
- moved at 3 different z
 - z = 0.42 (original z)
 - z = 0.25
 - z = 0.078 (same as HESS GRB 190829A)

Paper on core science with ASTRI-MA in preparation

ASTRI MINI-ARRAY

SIMULATIONS

- 190114C as a template
- moved at 3 different z
 - z = 0.42 (original z)
 - z = 0.25
 - z = 0.078 (same as HESS GRB 190829A)

Paper on core science with ASTRI-MA in preparation

OPEN QUESTIONS & FUTURE CHALLENGES

- Does SSC interpretation hold for all detected GRBs?
- Which conditions are required to produce VHE component? How common are these conditions?
- Nature of TeV emission always the same or competing processes can dominate the TeV range?
- VHE observations during the prompt: unique tool to understand the origin of prompt radiation
- VHE emission in short GRBs: understand differences short/long (environment, jet,...)

Backup slides

LARA NAVA - INAF

GRB 190829A: TEV SPECTRA

GRB 190829A: MODELING MW LIGHTCURVES

GRB 190829A: MODELING MW LIGHTCURVES

Parameter ^a	narrow prior	wide prior	bounds	prior type ^{b}
$E_0/10^{53}{ m erg}$	$2.17^{+2.35}_{-1.14}$	$2.17\substack{+63.1 \\ -0.56}$	$10^{48} - 10^{56}$	l.u.
$n/{ m cm^{-3}}$	$0.175\substack{+0.35\\-0.11}$	$0.175_{-0.007}^{+5.77}$	$10^{-6} - 10^2$	l.u.
Γ_0	$57.8^{+7.3}_{-7.0}$	$57.8^{+3.7}_{-8.2}$	> 10	l. u.
$ heta_{ m j}/{ m deg}$	$15.1^{+1.9}_{-1.95}$	$15.1^{+2.2}_{-1.06}$	0.6 - 60	u.
$\epsilon_{ m e,FS}$	$0.029\substack{+0.036\\-0.016}$	$0.029\substack{+0.017\\-0.028}$	$10^{-6} - 0.6$	l. u.
$\epsilon_{ m B,FS}/10^{-4}$	$0.54\substack{+0.45\\-0.39}$	< 0.63 (90%)	$10^{-6} - 0.3$	l. u.
$p_{ m FS}$	$2.01\substack{+0.002 \\ -0.005}$	$2.01\substack{+0.006\\-0.005}$	2.001-2.9	u.
$\chi_{e,FS}/10^{-2}$	$2.3^{+2.2}_{-1.3}$	$2.3\substack{+0.35 \\ -2.15}$	$10^{-2}(10^{-10}) - 10^{0}$	l.u.
$\epsilon_{ m e,RS}$	$0.27\substack{+0.33 \\ -0.08}$	$0.27\substack{+0.33 \\ -0.26}$	$10^{-6} - 0.6$	l. u.
$\epsilon_{ m B,RS}/10^{-3}$	$1.7\substack{+3.6 \\ -1.2}$	$1.7\substack{+0.1 \\ -1.6}$	$10^{-6} - 0.3$	l. u.
p_{RS}	$2.15\substack{+0.014 \\ -0.11}$	$2.15\substack{+0.015\\-0.095}$	2.001-2.9	u.
$ ho_{sys}/10^{-2}$	$1.4\substack{+0.5 \\ -0.2}$	$1.4\substack{+0.5 \\ -0.2}$	$10^{-10} - 10^0$	l.u.
$E_{\rm jet}/10^{51}{\rm erg}$	$7.5^{+9.3}_{-3.7}$	$7.5\substack{+170 \\ -0.35}$	—	_
$\eta_\gamma/10^{-3}$	$1.3^{+1.5}_{-0.7}$	$1.3\substack{+0.5 \\ -0.7}$	_	_

Salafia et al. 2022, ApJ, 931L, 19

X-RAY AND TEV LUMINOSITY LIGHTCURVES

V CONGRESSO NAZIONALE GRB

LARA NAVA - INAF

AMATI CORRELATION

V CONGRESSO NAZIONALE GRB

LARA NAVA - INAF