

GRB 080928 afterglow polarization analysis and GRBs spectropolarimetry

GRBV – V Congresso Nazionale GRB - TRIESTE

R. Brivio, S. Covino, P. D'Avanzo, K. Wiersema, J.R. Maund, M.G. Bernardini, S. Campana, A. Melandri

$$\begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix} \quad P_l = \frac{\sqrt{Q^2 + U^2}}{I}$$
$$\theta = \frac{1}{2} \operatorname{atan}\left(\frac{U}{Q}\right)$$

POLARISATION OF ELECTROMAGENTIC RADIATION

GAMMA-RAY BURSTS

PARADIGM?

$$\begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix} \quad P_l = \frac{\sqrt{Q^2 + U^2}}{I}$$
$$\theta = \frac{1}{2} \operatorname{atan}\left(\frac{U}{Q}\right)$$

POLARISATION OF ELECTROMAGENTIC RADIATION

$$\begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix} \quad P_l = \frac{\sqrt{Q^2 + U^2}}{I}$$
$$\theta = \frac{1}{2} \operatorname{atan}\left(\frac{U}{Q}\right)$$

GAMMA-RAY BURSTS

Emitting region features, jet geometry, magnetic fields, ...

POLARISATION OF ELECTROMAGENTIC RADIATION

$$\begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix} \quad P_l = \frac{\sqrt{Q^2 + U^2}}{I}$$
$$\theta = \frac{1}{2} \operatorname{atan}\left(\frac{U}{Q}\right)$$

GAMMA-RAY BURSTS

Emitting region features, jet geometry, magnetic fields, ...

POLARISATION ANALYSIS!

Asymmetries in the emitting region

GAMMA-RAY BURSTS

POLARISATION OF

ELECTROMAGENTIC RADIATION

POLARISATION ANALYSIS!

GRB	Telescope	Instrument	$t-t_0$ [h]	P [%]	ϑ [°]	Ref
020813	Keck	LRISp	4.7 – 7.9	1.8 - 2.4	148 - 162	Barth et al. (2003)
021004	VLT	FORS1	18.83	0.8 - 1.7	100 - 147	Wang et al. (2004)
	VLT	FORS1	0	1.9	118	Lazzati et al. (2004)
030329			24 – 72	0.3 – 1.5		Greiner et al. (2004)
	VLT	FORS1	86.4	0.5 – 0.9	73 – 83	Covino et al. (2003)
191221B	SALT	RSS	3.26	1.5 ± 0.5	65 ± 10	Buckley et al. (2021)
	VLT	FORS2	10.58	1.2	60	()

GRB	Telescope	Instrument	$t-t_0$ [h]	P [%]	ϑ[°]	Ref
020813	Keck	LRISp	4.7 – 7.9	1.8 – 2.4	148 – 162	Barth et al. (2003)
021004	VLT	FORS1	18.83	0.8 - 1.7	100 - 147	Wang et al. (2004)
	VLT	FORS1	0	1.9	118	Lazzati et al. (2004)
030329			24 – 72	0.3 – 1.5		Greiner et al. (2004)
	VLT	FORS1	86.4	0.5 – 0.9	73 – 83	Covino et al. (2003)
191221B	SALT	RSS	3.26	1.5 ± 0.5	65 ± 10	Buckley et al. (2021)
	VLT	FORS2	10.58	1.2	60	0

GRB	Telescope	Instrument	$t-t_0$ [h]	P [%]	ϑ [°]	Ref	
020813	Keck	LRISp	4.7 – 7.9	1.8 - 2.4	148 - 162	Barth et al. (2003)	
021004	VLT	FORS1	18.83	0.8 - 1.7	100 - 147	Wang et al. (2004)	No evidence of
	VLT	FORS1	0	1.9	118	Lazzati et al. (2004)	λ-dependence
030329			24 – 72	0.3 – 1.5		Greiner et al. (2004)	
	VLT	FORS1	86.4	0.5 - 0.9	73 – 83	Covino et al. (2003)	Mild ISM
191221B	SALT	RSS	3.26	1.5 ± 0.5	65 ± 10	Buckley et al. (2021)	polarisation
	VLT	FORS2	10.58	1.2	60	()	

GRB	Telescope	Instrument	$t-t_0$ [h]	P [%]	ϑ [°]	Ref	
020813	Keck	LRISp	4.7 – 7.9	1.8 – 2.4	148 – 162	Barth et al. (2003)	
021004	VLT	FORS1	18.83	0.8 – 1.7	100 - 147	Wang et al. (2004)	No evidence o
	VLT	FORS1	()	1.9	118	Lazzati et al. (2004)	λ-dependence
030329			24 – 72	0.3 – 1.5		Greiner et al. (2004)	
	VLT	FORS1	86.4	0.5 – 0.9	73 – 83	Covino et al. (2003)	Mild ISM
191221B	SALT	RSS	3.26	1.5 ± 0.5	65 ± 10	Buckley et al. (2021)	pelalisation
	VLT	FORS2	10.58	1.2	60	0	
080928	VLT	FORS1				Brivio et al. (accepted in A&A)	

GRB 080928 - INSTRUMENTATION

INSTRUMENTATION: ESO-VLT FORS1

LOCATION:	CASSEGRAIN focus of UT1 (ANTU)
OBSERVING MODES:	Imaging - spectroscopy Imaging/Spectro-polarimetry
WAVELENGTH:	OPTICAL, 330-1100 nm
SPATIAL RESOLUTION:	0.25"/pixel (SR) / 0.125"/pixel (HR)
SPECTRAL RESOLUTION:	260 to 1600 (low to medium)

#2 #2 #4 #4 #6 #6 #8 #8

split stripe into e-ray and o-ray

stripe pairs on the CCD

GRB 080928 - INSTRUMENTATION

INSTRUMENTATION: ESO-VLT FORS1

LOCATION:	CASSEGRAIN focus of UT1 (ANTU)
OBSERVING MODES:	Imaging - spectroscopy Imaging/Spectro-polarimetry
WAVELENGTH:	OPTICAL, 330-1100 nm
SPATIAL RESOLUTION:	0.25"/pixel (SR) / 0.125"/pixel (HR)
SPECTRAL RESOLUTION:	260 to 1600 (low to medium)

$$\frac{\boldsymbol{Q}}{\boldsymbol{I}} = \frac{1}{2} \left[\left(\frac{f_o - f_e}{f_o + f_e} \right)_{0^\circ} - \left(\frac{f_o - f_e}{f_o + f_e} \right)_{45^\circ} \right]$$
$$\frac{\boldsymbol{U}}{\boldsymbol{I}} = \frac{1}{2} \left[\left(\frac{f_o - f_e}{f_o + f_e} \right)_{22.5^\circ} - \left(\frac{f_o - f_e}{f_o + f_e} \right)_{67.5^\circ} \right]$$

#2 #2 #4 #4 #6 #6 #8 #8

polarisation optics

split stripe into e-ray and o-ray

stripe pairs on the CCD

GRB 080928 – INSTRUMENTATION

INSTRUMENTATION: ESO-VLT FORS1

LOCATION:	CASSEGRAIN		1 / A KITLI\	Contraction of the local distance of the loc
OBSERVING MODES:	Imaging - sp Imaging/Sp		OBSERVA	TIONS
WAVELENGTH:	OPTICAL, 33	IPOL	14.01 – 14.81 h	V_HIGH filter
SPATIAL RESOLUTION:	0.25"/pixel	PMOS	14.95 – 16.60 h	300V grism
F	200 to 100t	IPOL	39.39 – 42.01 h	V_HIGH filter
$\frac{\boldsymbol{Q}}{\boldsymbol{I}} = \frac{1}{2} \left[\left(\frac{f_o - f}{f_o + f} \right) \right]$	$\left(\frac{f}{f}\right)_{0^{\circ}} - \left(\frac{f}{f}\right)_{0^{\circ}}$	$\left(\frac{b}{b} - f_e\right)_{45^\circ}$		
$\frac{U}{I} = \frac{1}{2} \left[\left(\frac{f_o - f_o}{f_o + f_o} \right) \right]$	$\left(\frac{e}{e}\right)_{22.5^{\circ}}$ –	$\left(\frac{f_o - f_e}{f_o + f_e}\right)_6$	57.5°]	

IMAGING POLARIMETRY RESULTS

IMAGING POLARIMETRY RESULTS

SPECTRO-POLARIMETR ULTS RES

V Congresso Nazionale GRB - Trieste - 2022/09/12

7500

UITS

RES

SPECTRO-POLARIMETR

POLARISATION CURVE

COMPARISON WITH MODELS

Astrophysical polarimetry in the time-domain era - Lecco - 2022/09/01

COMPARISON WITH MODELS

V Congresso Nazionale GRB - Trieste - 2022/09/12

7

→ If $t_j = 0.93$ d GRB 080928 was probably characterized by an homogeneous jet. Structured and Gaussian jets have been excluded after comparison with models;

- → If $t_j = 0.93$ d GRB 080928 was probably characterized by an homogeneous jet. Structured and Gaussian jets have been excluded after comparison with models;
- → Polarisation degree results are consistent with $0.6 < \vartheta_{obs}/\vartheta_{jet} < 0.8$. Polarisation detection coincides with the second rise in the curve;

- → If $t_j = 0.93$ d GRB 080928 was probably characterized by an homogeneous jet. Structured and Gaussian jets have been excluded after comparison with models;
- → Polarisation degree results are consistent with $0.6 < \vartheta_{obs}/\vartheta_{jet} < 0.8$. Polarisation detection coincides with the second rise in the curve;

ιθ

- → If $t_j = 0.93$ d GRB 080928 was probably characterized by an homogeneous jet. Structured and Gaussian jets have been excluded after comparison with models;
- → Polarisation degree results are consistent with $0.6 < \vartheta_{obs}/\vartheta_{jet} < 0.8$. Polarisation detection coincides with the second rise in the curve;

 \rightarrow The fifth GRB spectro-polarimetric analysis overall, one of the relatively few GRB polarisation detections;

→ The same method can be applied to more GRBs to increase the sample and look for similarities and differences.

Thank you for the attention!

BACK-UP SLIDES

POLARISATION DETECTION vs. JET BREAK TIME

ASTROPHYSICAL POLARIMETRY IN THE TIME-DOMAIN ERA - LECCO - 2022/09/01