New insights into the physics of GRB prompt emission from high energy observations

In collaboration with: Dr. Giancarlo Ghirlanda Dr. Lara Nava Dr. Gabriele Ghisellini Dr. Gor Oganesyan

Maria Edvige Ravasio

Radboud University INAF - Astronomical Observatory of Brera GRBV – 12/09/2022

Gamma-Ray Burst: standard model

Gamma-Ray Burst: standard model

Oganesyan et al., 2017, ApJ Oganesyan et al., 2018, A&A

Analyzing 34 long GRBs down to the X-rays:

- 62% of the prompt spectra display a break between 2 and 30 keV
- the **spectral indices** are $<\alpha_1 > = -0.51 \pm 0.29$

Ravasio et al., 2018, A&A Ravasio et al., 2019, A&A

Analyzing 10 **long GRBs** at γ -ray energies:

- 70% of the prompt spectra display a break between 20 and 300 keV
- the **spectral indices** are $<\alpha_1 > = -0.58 \pm 0.16$

- → In **both cases**, photon indices from empirical fits **consistent with synchrotron predictions**
- Direct test of the synchrotron model with data [Ronchi M., Fumagalli F., Ravasio M.E. et al, 2020, A&A; Oganesyan et al. 2019; Burgess et al. 2020]

- → In **both cases**, photon indices from empirical fits **consistent with synchrotron predictions**
- Direct test of the synchrotron model with data [Ronchi M., Fumagalli F., Ravasio M.E. et al, 2020, A&A; Oganesyan et al. 2019; Burgess et al. 2020]

Maria Edvige Ravasio, Radboud Univ. – V Congresso Nazionale GRB, Trieste – 12/09/2022

4

GRB 211211A: long GRB with a kilonova

[Rastinejad et al, (...) **Ravasio** et al, 2022, submitted to Nature]

GRB 211211A: long GRB with a kilonova

GRB 211211A: long GRB with a kilonova

Both $\nu_{_{\text{cool}}}$ and $\nu_{_{\text{min}}}$ evolving from gamma- to X-rays

→ First time synchrotron cooling found in a merger-driven GRB!

[Gompertz, **Ravasio** et al, 2022, under revision by Nature Astronomy]

GRB Standard Model:

Consequences of a low magnetic field in the leptonic scenario:

(standard model)

Not observed!

Consequences of a low magnetic field in the leptonic scenario:

$$\rightarrow$$
 R ~ 10¹³ - 10¹⁴ cm

(standard model)

Not observed!

- \rightarrow R ~ 10¹⁶ 10¹⁷ cm \cdot
 - Variability timescale?? → very large Γ

Afterglow??

Proton-synchrotron scenario: R-10¹³ CM

A possible solution: the prompt emission may be produced by synchrotron from **protons** rather than electrons

Ghisellini et al., A&A, 2020

Require higher magnetic field of $B\sim 10^7 G$ in a 'standard' emitting region at $R\sim 10^{13}$ cm with 'standard' bulk Lorentz factors $\Gamma\sim 10^2$

...still under investigation (see Florou et al. 2021, Bégué, Samuelsson, Pe'er 2021)

GRBs as relativistic sources

- The variability timescales δt imply that the source is compact

The spectrum is non-thermal and

made by high energies photons

If the emitting matter is moving relativistically with a bulk Lorentz factor Γ

[Lithwick & Sari 2001]

[Piran 1999]

Searching for compactness signature in Fermi data

Ravasio et al., in prep.

Searching for compactness signature in Fermi data

Ravasio et al., in prep.

Searching for compactness signature in Fermi data

Results of the joint analysis: high-energy cutoff

→ in 10/22 bursts, the spectral data significantly required the presence of an exponential cutoff at high energies, with E_{cutoff} between ~ 14 and 298 MeV

Maria Edvige Ravasio, Radboud Univ. – V Congresso Nazionale GRB, Trieste – 12/09/2022

11

Theoretical interpretation: pair-production

Pair-production & afterglow onset

Method to restrict the parameter space for the prompt emission

Results of the joint analysis: high-energy slope

Conclusion

It looks like synchrotron, it smells like synchrotron, BUT...

In the leptonic scenario

B ~ 10 Gauss

Hard to reconcile with the standard model

In the hadronic scenario **B ~ 10⁷ Gauss**

Feasible but limited parameter space

Conclusion

• GRB Prompt emission: → Is it synchrotron? It

In the leptonic scenario

B ~ 10 Gauss

Hard to reconcile with the standard model

It looks like synchrotron, it smells like synchrotron, BUT...

In the hadronic scenario $B \sim 10^7 Gauss$

Feasible but limited parameter space

16

- High-energy: $_{\rightarrow}$ $_{\Gamma}$ from compactness (independent from the radiative process) $140 \leq \Gamma \leq 330$

 \rightarrow Slope of the particles distribution

Conclusion

GRB Prompt emission:

Is it synchrotron?

It looks like synchrotron, it smells like synchrotron, BUT...

more **HE** and **VHE** observations needed to fully uncover the prompt GRB parameter space ٠

Ravasio et al., in prep.

Maria Edvige Ravasio, Radboud Univ. – V Congresso Nazionale GRB, Trieste – 12/09/2022

Thanks for your attention

Back-up slides

Gamma-Ray Burst: standard model

Theoretical expectations

→ observed non-thermal spectrum

[Briggs et al., 1999]

→ accelerated electrons in a magnetized region

Synchrotron?

[Katz 1994] [Rees & Meszaros 1994] [Sari & Piran 1997] [Ghisellini et al. 2000]

Theoretical expectations

[→ but the long merger-driven GRB 211211A shows two breaks, see Gompertz, **Ravasio** et al. 2022]
Recent hints from the observations

Multi-component models: the addition of a blackbody

The spectrum could be a **combination of thermal and non-thermal emission**

Physically motivated as the emission from the fireball photosphere, demonstrated to be present in few cases (Ghirlanda et al., 2003)

The addition of a blackbody (BB) can produce a **hardening** of the low energy part of the spectrum

The addition of a BB has been widely used in literature

(Ryde et al. 2010, Guiriec et al. 2011,2013,2015, 2016, 2017)

E.g. from Guiriec et al. 2011

Comparison of the fitting functions

GRB160625B: time-resolved analysis

Comparison between competing models: One- vs Two-Component

GRB 211211A: long GRB with a kilonova

Time-resolved analysis with 2 s time resolution of Swift and Fermi data

Tested: Band, Band+BB, 2SBPL

Recent hints from the observations

Recent hints from the observations

Comparison with the BB: the optical emission

Oganesyan, Nava, Ghirlanda, Melandri & Celotti, 2019

Fit the synchrotron model

to XRT+BAT (+GBM) spectra

3000 GRB 061121 [63.99-68.83 sec] 18 4.0 10-6 16 3.5 2500 10⁻⁷ cm 14 3.0 ${
m cm^{-2}}\left[{
m BAT}
ight]$ cm^{-2}] 2000 TXX 10-8 12 $\nu F_{\nu} \propto \nu^{4/3}$ $\nu F_{\nu} [erg s^{-1}$ 10-10 10^{-10} 10 1500 2.0 ഇ count s⁻¹ 8 1000 count Prediction of the **Optical flux** optical flux 1.0 10⁻¹¹ 500 0.5 10⁻¹² 10^{19} 10^{15} 10^{16} 10^{17} 10^{18} 0.0 60 100 120 140 160 180 200 80 $\nu \, [\text{Hz}]$ Time[s]

21 GRBs, 56 TIME-RESOLVED SPECTRA

Optical data + XRT [0.5 – 10 keV] + BAT [15 – 150 keV]

Comparison with the BB: the optical emission

Recap from observations

What we have learnt:

- → Long GRB → additional spectral break (both in *Swift* and *Fermi* bursts)
- Short GRB \rightarrow no additional break (possible only with *Fermi* bursts)
- → In both cases, photon indices from empirical fits consistent with synchrotron predictions [Oganesvan et al. 2017,2018 ; Ravasio et al., 2018, 2019]
 - Direct test of the synchrotron model with data

[Ronchi M., Fumagalli F., Ravasio M.E. et al, 2020, A&A ; Oganesyan et al. 2019 ; Burgess et al. 2020]

Marginally fast cooling regime

Switching roles: synchrotron from protons

These new results could be explained by synchrotron emission from **protons** rather than electrons

+ NaI6 + NaI8 + BGO1

E F_E [keV·s⁻¹·cm⁻²]

Ghisellini et al., A&A, 2020

ne-resolved spectrum

 10^{4}

10³ E [keV]

Much longer!! ~1-10 s

magnetic field of B~10⁷ G

in a 'standard' emitting

region at R~10¹³ cm

We need a higher

For typical parameters of the emitting region (**B'~10⁶ G**): Electrons $\longrightarrow t^{obs}$, $\sim 10^{-7}s$ Too short!!

Protons
$$t_{cool,p}^{obs} \sim t_{cool,e}^{obs} \left(\frac{m_p}{m_e}\right)^{5/2} \sim 1.44 \times 10^8 t_{cool,e}^{obs}$$

...still under investigation (see Florou et al. 2021)

GRBs as relativistic sources

- The variability timescales δt imply that the source is compact

• The spectrum is non-thermal and made by high energies photons

 \rightarrow The optical depth for pair-production

 $\tau_{\gamma\gamma} \approx \frac{f_{e^{\pm}} \sigma_T 4\pi d^2 F}{\bar{E}_{\gamma} c^2 \delta t} \longrightarrow \tau_{\gamma\gamma} \sim 10^{15}$

for typical parameters $(t_{var} = 10 \text{ ms}, E_{iso} = 10^{52} \text{ erg}, beta=-2,5, z=2)$

 \rightarrow inconsistent with observations! ('compactness problem', Piran 1999)

Selection of the sample

Ravasio et al., in prep.

LAT

100 MeV - 10 GeV

 E_{cutoff}

106

107

Inferring the distance R from the central engine

Inferring the distance R from the central engine

Deceleration of the jet: observational features

Deceleration of the jet: observational features

From the **peak of the afterglow lightcurve**, it is possible to derive an **estimate of Γ**, that depends on:

[[]Ghirlanda et al.. 2018]

Spectral analysis of GRB 190114C

Evidence of compresence of **prompt** and **afterglow** in the GBM energy range

Ravasio et al., 2019, A&A

Comparison of the fitting functions

Comparison of the fitting functions

 \rightarrow We investigated this issue through both data analysis and simulation

- We analyzed a sample of 31 GRBs spectra with high fluence and high peak energy
- We confirm the presence of a statistically significant low-energy break in 12 cases

- Through spectral simulations we investigated if bursts without an evident break can still have it at the limits of the spectral energy range
- Our results suggest that the low-energy break could be a more common feature, but hidden behind the intrinsic shape of the Band function
- $\alpha_{_{Band}}$ could be a proxy for the position of the break

GRB 160625B

Adding a break at low energy \rightarrow the fit significantly improves! σ (F-test) > 8 σ

Ravasio et al., 2018, A&A

Results of the time-resolved spectral analysis

The synchrotron modeling of GRB 180720B

 \rightarrow see also synchrotron model fit by Oganesyan et al. 2019 and Burgess et al. 2020

The synchrotron modeling of GRB 180720B

 \rightarrow see also synchrotron model fit by Oganesyan et al. 2019 and Burgess et al. 2020

Conclusion

 Strong observational evidences in both Swift and Fermi data in favour of the synchrotron origin of GRBs spectra [Oganesyan et al. 2017,2018,2019; Ravasio et al., 2018, 2019;

Ronchi et al., 2020, Burgess et al. 2020]

In the leptonic scenario **B ~ 10 Gauss**

Hard to reconcile with the standard model

Feasible but limited parameter space

Conclusion

• Strong observational evidences in both Swift and Fermi data in favour of the synchrotron origin of GRBs spectra [Oganesyan et al. 2017,2018,2019; Ravasio et al., 2018, 2019;

- High-energy: $_{\rightarrow}$ $_{\Gamma}$ from compactness (independent from the radiative process) $140 \leq \Gamma \leq 330$

Ravasio et al., in prep.

Conclusion

 Strong observational evidences in both Swift and Fermi data in favour of the synchrotron origin of GRBs spectra [Oganesyan et al. 2017,2018,2019; Ravasio et al., 2018, 2019;

- High-energy: $_{\rightarrow}$ $_{\Gamma}$ from compactness (independent from the radiative process) $140 \leq \Gamma \leq 330$

- high energy prompt spectra + afterglow lightcurves \rightarrow distance R $\sim 10^{13} 10^{15}$ cm
- more **HE** and **VHE** observations needed to fully uncover the prompt GRB parameter space

Ravasio et al., in prep.