

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

SCIENTIFIC FRAMEWORK

Understanding the formation mechanism of cosmic dust grains by means of laboratory simulation

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

SCIENTIFIC FRAMEWORK

Understanding the formation mechanism of cosmic dust grains by means of laboratory simulation

Laboratory synthesis of <u>olivines</u> and <u>pyroxenes</u> under conditions similar to those of the atmospheres of oxygen-rich evolved stars (gas-phase reactions between atomic Si, Mg, and Fe under a controlled oxygen-rich atmosphere)

erc

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

SCIENTIFIC FRAMEWORK

Understanding the formation mechanism of cosmic dust grains by means of laboratory simulation

Laboratory synthesis of <u>olivines</u> and <u>pyroxenes</u> under conditions similar to those of the atmospheres of oxygen-rich evolved stars (gas-phase reactions between atomic Si, Mg, and Fe under a controlled oxygen-rich atmosphere)

Stardust machine (at "Instituto de Ciencia de Materiales de Madrid" – Spain)

HOW?

nanocosmos

Stardust machine

Designed to simulate in the laboratory:

- the complex condition of cosmic dust formation (dust formation proceeds via atom aggregation)
- the processing in the environment of evolved stars and ISM

Stardust machine

Designed to simulate in the laboratory:

- the complex condition of cosmic dust formation (dust formation proceeds via atom aggregation)
- the processing in the environment of evolved stars and ISM

>7 m

It is equipped with a battery of in-situ and exsitu diagnostic techniques useful for characterizing both the gasphase and solidphase products.

Stardust machine

Designed to simulate in the laboratory:

- the complex condition of cosmic dust formation (dust formation proceeds via atom aggregation)
- the processing in the environment of evolved stars and ISM

Stardust machine now is a facility!

You can ask access time to perform your experiments (details during the coffee-break!)

>7 m

It is equipped with a battery of in-situ and exsitu diagnostic techniques useful for characterizing both the gasphase and solidphase products.

> Composed by six different UHV modules, adaptable to different kind of experiments

> Some of these modules (INFRA or ANA) can work independently

Magnetron sputter source --> cluster and nanoparticle fabrication

(more details can be found in: Y. Huttel, Gas-Phase Synthesis of Nanoparticles., 2017, Wiley-VCH)

Multiple Ion Cluster Source module

> Magnetron sputter source --> cluster and nanoparticle fabrication

(more details can be found in: Y. Huttel, Gas-Phase Synthesis of Nanoparticles., 2017, Wiley-VCH)

Multiple Ion Cluster Source module

> Magnetron sputter source --> cluster and nanoparticle fabrication (more details can be found in: Y. Huttel, *Gas-Phase Synthesis of Nanoparticles.*, 2017, Wiley-VCH)

Composed by three independent magnetrones

Multiple Ion Cluster Source module

- > Magnetron sputter source --> cluster and nanoparticle fabrication (more details can be found in: Y. Huttel, *Gas-Phase Synthesis of Nanoparticles.*, 2017, Wiley-VCH)
- Composed by three independent magnetrones
- > Sputter target: graphite, silicon, metals, etc.

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

> As cosmic silicates are believed to be composed of a <u>mixture</u> of amorphous <u>olivine</u> and <u>pyroxene minerals</u>, our purpose is to synthesize and characterize the nanoparticles formed from the gas-phase reactions between atomic Si, Mg, and Fe under a controlled oxygen-rich atmosphere.

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

> As cosmic silicates are believed to be composed of a <u>mixture</u> of amorphous <u>olivine</u> and <u>pyroxene minerals</u>, our purpose is to synthesize and characterize the nanoparticles formed from the gas-phase reactions between atomic Si, Mg, and Fe under a controlled oxygen-rich atmosphere.

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

> As cosmic silicates are believed to be composed of a <u>mixture</u> of amorphous <u>olivine</u> and <u>pyroxene minerals</u>, our purpose is to synthesize and characterize the nanoparticles formed from the gas-phase reactions between atomic Si, Mg, and Fe under a controlled oxygen-rich atmosphere.

>We need to use the 3 magnetrons at the same time to extract simultaneously the atomic species (Si, Mg, and Fe) from solid targets inside the ultraclean setup.

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

> As cosmic silicates are believed to be composed of a <u>mixture</u> of amorphous <u>olivine</u> and <u>pyroxene minerals</u>, our purpose is to synthesize and characterize the nanoparticles formed from the gas-phase reactions between atomic Si, Mg, and Fe under a controlled oxygen-rich atmosphere.

>We need to use the 3 magnetrons at the same time to extract simultaneously the atomic species (Si, Mg, and Fe) from solid targets inside the ultraclean setup.

> Ambitious and challenging project. A great effort is required to reach this achievement: the three magnetrons inside Stardust machine had been never used at the same time!

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

> As cosmic silicates are believed to be composed of a <u>mixture</u> of amorphous <u>olivine</u> and <u>pyroxene minerals</u>, our purpose is to synthesize and characterize the nanoparticles formed from the gas-phase reactions between atomic Si, Mg, and Fe under a controlled oxygen-rich atmosphere.

>We need to use the 3 magnetrons at the same time to extract simultaneously the atomic species (Si, Mg, and Fe) from solid targets inside the ultraclean setup.

> Ambitious and challenging project. A great effort is required to reach this achievement: the three magnetrons inside Stardust machine had been never used at the same time!

➤The present project has been conceived as a natural continuation of my previous works

Formation of Silicate Dust Grains under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars

