DuCK - Dust Charging Knowhow

MICROMED

G. Franzese¹ (gabriele.franzese@inaf.it) G. Mongelluzzo¹, C. Porto¹, F. Esposito¹, F. Cozzolino¹, S. Silvestro¹ 1: INAF Osservatorio Astronomico di Capodimonte, Napoli, Italy

Mineral Dust

from suspension of minerals constituting the soil grain size $\sim [10^{-2}\,\mu\text{m}:65\,\mu\text{m}]$

effects on the atmosphere:

it scatters and absorbs visible and infrared radiation

it cools down the surface and the low atmosphere, it heats the upper layers favouring a stable atmosphere

it inhibits the turbulence it reduces the vertical exchange of momentum, decreasing the near surface wind

Dust Storms

it influences the composition and vertical structure of the clouds

depending on the relative position of the dust layer and the cloud coverages

it can:

enhance the cloud evaporation

enhance the cloud lifetime

it alters the optical proprieties of clouds

the formation of droplet and

the precipitation formation

Dust Devils

contribution to atmospheric dust:

Dust Complex

Fiber Pump

Dust Complex:

suite of 4 instruments specifically aim to <u>characterize martian dust lifting phenomena and</u> <u>electrification</u>.

- impact sensor: detection of the saltating sand and charge measurement;
- electric probe for atmospheric E-field;
- electromagnetic activity sensor (EMA) for possible electromagnetic discharges;
- optical particle counter (MicroMED) dust concentration and size distribution.

MicroMED

Primarily scientific purposes:

First in situ analysis of the primary lifted dust.

In particular it will measure the lifted dust:

- concentration
- size distribution

Field Missions

Meteorological Station Temperature Soil & atmosphere at different heights 2-D sonic anemometers different heights 3-D anemometer Pressure Humidity Sensit (sand and dust impact) Sand catcher Dust concentration Electric field Solar irradiance Environmental Camera System

Objectives

Current Knowledge

Presence of an atmospheric electric circuit is not confirmed on Mars (lack of dedicated instruments)

Laboratories and simplified study cases suggest how E-field could lower the lifting threshold however current saltation models don't consider the E-field contribution

Fail to apply a single electrification model due to the complexity of the process main dependencies on size and composition

Most common configuration is: dipole like dust cloud negatively charged over a positive saltating sand bed

Our contribution

Modeling in steps of increasing difficulty

unidirectional wind (dust storm)

single mode grain population (only sand)

a priori charge-to-mass ratio (empirically derived)

vortex wind (dust devils)

bi mode grain population (sand + dust)

parametric description charge-to-mass ratio (tuned on field data)

adaptation from terrestrial is to martian environment

different ionic species possible electron avalanches and discharges.

Thanks to all