

Cosmology: open problems & perspectives

Emiliano Sefusatti, Osservatorio Astronomico di Trieste





General Relativity  $R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8 \pi G^7$ 

#### Standard Model of Particle Physics

 $-\frac{1}{4}F^a_{\mu\nu}F^{a\mu\nu} + i\bar{\psi}^i\gamma^\mu D_\mu$  $+\left(\bar{\psi}^i_L V_{ij}\Phi\psi^j_R + \text{h.c.}\right) - |D_\mu\Phi|^2 - \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2$ 

















#### **Cosmological Probes**



An example: Hubble constant measurements

Is this real?

If it is, then it is an extremely exciting **challenge to theory** 

If not, then we need to work a lot on systematics, since the **error bars are getting very small** ...

Other tensions are there, as the one on  $\sigma_8$ : a "dynamical" one



Gravitational Waves

#### The future



#### INAF is "sparse-sampling" this huge effort



#### A variety of tasks, expertises & backgrounds



Cosmological parameters



For each of these probes the variety in the expertise required has been steadily growing over the past years ...

#### A variety of tasks, expertises & backgrounds







 $k_{max} = 0.1 h Mpc^{-1}$   $k_{max} = 0.15 h Mpc^{-1}$   $k_{max} = 0.20 h Mpc^{-1}$   $k_{max} = 0.20 h Mpc^{-1}$  $k_{max} = 0.25 h Mpc^{-1}$ 













### Cosmological parameters

Power Spectrum, P(k) / 2-Point Function,  $\xi(r)$ 



















#### **Cosmology with next-generation galaxy surveys**

#### Luigi Guzzo

Dipartimento di Fisica "Aldo Pontremoli", Universita` di Milano & INAF Osservatorio Astronomico di Brera



### Preliminary remarks

Many thanks to all collaborators in Euclid and other projects.
 Special thanks to B. Granett, C. Carbone, D. Bianchi, M.
 Archidiacono, F. Tosone, M. Cagliari, E. Castorina

★ All Euclid material and forecasts shown on behalf of (and approved by) the Euclid Consortium

★ CAVEAT: inevitably, a biased review

### Outline

- ★ The golden era of galaxy surveys
- ★ Data complexity: "...with great power comes great responsibility"
- ★ Data richness: how do we extract all cosmological information?

## Galaxy redshift surveys: a pillar of the standard model of cosmology

2001: Sloan Digital Sky Survey + 2dFGRS ~1 million redshifts to z~0.15



## Galaxy redshift surveys: a pillar of the standard model of cosmology



#### What we want to get from galaxy surveys, first of all



Planck 2018 - I

#### What does this mean, in practice...

#### • Science comes from overdensities $\delta(\mathbf{x})$

- Need galaxy catalogue
- Need survey mask (shape, hoes, sensitivity...):
  - angular completeness
  - radial completeness
  - radial/angular fluctuations
- 2-point statistics of δ field contain most (yet not all), information:
- power spectrum

 $\langle \delta(\mathbf{k_1}) \delta(\mathbf{k_2}) \rangle = (2\pi)^3 \delta_D(\mathbf{k_1} - \mathbf{k_2}) P(k_1)$ 

correlation function

$$\begin{aligned} \xi(\mathbf{x_1}, \mathbf{x_2}) &= \langle \delta(\mathbf{x_1}) \delta(\mathbf{x_2}) \rangle \\ &= \xi(\mathbf{x_1} - \mathbf{x_2}) \\ &= \xi(|\mathbf{x_1} - \mathbf{x_2}|) \end{aligned}$$



### The name of the game: go big

- I. If we measure P(k) or  $\xi(r)$  in the linear regime (large scales), we are directly probing primordial fluctuations
- 2. If these were Gaussian, two-point statistics is all we need to fully characterise the primordial density field
- 3. This is why we want larger and larger surveys, to map fluctuations as linear as possible
- 4. Various effects complicate the picture: nonlinear evolution, galaxy biasing, redshift-space distortions





2023: The next milestone cosmology mission

SPACE (Italy-led, Cimatti

et al.)

#### strong FTE contribution by Italy and INAF in particular

galaxy redshifts weak gravitational lensing

### Galaxy clustering probe



### Weak lensing probe

Light propagation through large-scale structure results in a lensed image





- ★ Correlate shapes of millions of galaxies to measure the cosmological signal at 10<sup>-3</sup> in ellipticity
- Measure clustering in the full mass distribution
  - Trace combined growth and expansion histories





### Euclid: dual wide-field imager and NIR spectrograph



### **Euclid surveys**

(Scaramella & EC 2022)

- Wide survey: 15,000 deg<sup>2</sup> (VIS, Y, J, H, spec)
- ~2 billion galaxy images
- ~30 million redshifts
- **Deep Fields: 43 deg<sup>2</sup> (calibration + science)**

![](_page_38_Figure_6.jpeg)

Euclid Deep Fields [total 43 deg<sup>2</sup>]

DES, griz, 2013–19 : 4500 deg<sup>2</sup> overlap with the region of interest

UNIONS [CFIS / JEDIS-g / Pan-STARRS / WISHES], ugriz, 2017-27: 4800 deg<sup>2</sup>

Background image: Euclid Consortium / Planck Collaboration / A. Mellinger

# Euclid: much more than a redshift survey

![](_page_39_Figure_1.jpeg)

#### Just an example: strong gravitational lensing by galaxies

![](_page_40_Picture_1.jpeg)

#### Euclid: 3300 in two months, 200,000 in total (Boldrin, Giocoli, Meneghetti 2016)

|                 | 0               | 0                 | -                |                  | ~                                       |                  | -                                       |                 |                 |
|-----------------|-----------------|-------------------|------------------|------------------|-----------------------------------------|------------------|-----------------------------------------|-----------------|-----------------|
| SDSS J1420+6019 | SDSS J2321-0939 | SDSS J1106+5228   | SDSS J1029+0420  | SDSS J1143-0144  | SDSS J0955+0101                         | SDSS J0841+3824  | SDSS J0044+0113                         | SDSS J1432+6317 | SDSS J1451-0239 |
|                 | 1               |                   |                  | 5                | 1                                       |                  | 5                                       |                 | 10              |
| SDSS J0959+0410 | SDSS J1032+5322 | SDSS J1443+0304   | SDSS J1218+0830  | SDSS J2238-0754  | SDSS J1538+5817                         | SDSS J1134+6027  | SDSS J2303+1422                         | SDSS J1103+5322 | SDSS J1531-0105 |
|                 | 0               |                   |                  |                  | •                                       |                  |                                         | 0               | •               |
| SDSS J0912+0029 | SDSS J1204+0358 | SDSS J1153+4612   | SDSS J2341+0000  | SDSS J1403+0006  | SDSS J0936+0913                         | SDSS J1023+4230  | SDSS J0037-0942                         | SDSS J1402+6321 | SDSS J0728+3835 |
| 0               | ( · )           |                   | 0                |                  |                                         |                  |                                         |                 |                 |
| SDSS J1627-0053 | SDSS J1205+4910 | SDSS J1142+1001   | SDSS J0946+1006  | SDSS J1251-0208  | SDSS J0029-0055                         | SDSS J1636+4707  | SDSS J2300+0022                         | SDSS J1250+0523 | SDSS J0959+4416 |
|                 |                 |                   | C                |                  |                                         |                  | 6                                       |                 |                 |
| SDSS J0956+5100 | SDSS J0822+2652 | SDSS J1621+3931   | SDSS J1630+4520  | SDSS J1112+0826  | SDSS J0252+0039                         | SDSS J1020+1122  | SDSS J1430+4105                         | SDSS J1436-0000 | SDSS J0109+1500 |
| 50591141645136  | 5055 1110015320 | SDSS 10737 + 3916 | 5055 10216 -0813 | 5055 80835 0003  |                                         | SDSS 11525+1327  | 5055 10903+4116                         |                 | SDSS 10157-0056 |
| 0000 0111010100 | 0000 0110010020 | 0000 0010110210   | 000000210-0010   | 0000 00000 00000 | 000000000000000000000000000000000000000 | 0000 01020 0002/ | 000000000000000000000000000000000000000 | 0000 0000 0004  | 0000 00101 0000 |

#### SLACS: The Sloan Lens ACS Survey

#### www.SLACS.org

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Image credit: A. Bolton, for the SLACS team and NASA/ESA

### Euclid is ready for launch (2023)

• July 1<sup>st</sup>, 2022 @ Thales-AleniaSpace in Turin

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

• Flight model fully assembled, now in Cannes for final environmental tests

### The competition: Dark Energy Spectroscopic Instrument (DESI)

- 5000 fibres MOS @ Kitt Peak
  4.2m Mayall Telescope
- Ω = I 4,000deg<sup>2</sup>
- ~30 million galaxies z<1.4</li>
- ~600,000 quasars
- Complementary to Euclid spectroscopic survey in many respects
- No Italian participation (unlike virtually all other Euclid major countries)

<image>

A "petal" with a subset of the 5000 automatic fibre positioners

(Other forthcoming fibre couplers, as WEAVE (WHT) and 4MOST (VISTA) but not comparable in terms of cosmological application/power)

![](_page_42_Picture_10.jpeg)

![](_page_42_Picture_11.jpeg)

### **DESI** status

- Commissioned in 2019
- As of today (fall 2022):
  - >100,000 z / night (!)
  - >15 million redshifts observed
  - Internal DR1 frozen

High precision requires high control of systematics (high accuracy)

### Euclid data are complex: slitless spectroscopy

![](_page_45_Picture_1.jpeg)

Euclid NISP-S simulated exposure, with  $H_{\alpha}$  lines marked (B. Granett & e2e group)

#### Slitless mode critically different from traditional redshift surveys...

![](_page_46_Figure_1.jpeg)

### End-to-end simulations are key in this game...

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_0.jpeg)

Serrano, Hudelot & OU-SIM

![](_page_49_Picture_0.jpeg)

### ... to derive informed forecasts of scientific performances

#### REFERENCE PAPER: IST:F & Euclid Consortium, arXiv:1910.09273

![](_page_50_Figure_2.jpeg)

Work no progressing with IST:Likelihood IST:NonLinear

# The power of probe combination

![](_page_50_Figure_5.jpeg)

![](_page_50_Picture_6.jpeg)

# There is more in the data beyond two-point statistics

#### Add higher-order information: VIPERS joint 2-point + 3-point constraints

![](_page_52_Figure_1.jpeg)

(Veropalumbo, w/ Branchini, LG et al.+ 2021, MNRAS, 507, 1184)

![](_page_52_Figure_3.jpeg)

### Add higher-order information: Euclid Fourier-space forecasts

![](_page_53_Figure_1.jpeg)

(Moretti, Sefusatti+, in prep.)

- $\bigstar$  Combine P(k) and B(k)
- Include redshift-space distortion constraints (multipoles)
- Dedicated work package inside Euclid Galaxy Clustering SWG (led by Sefusatti & Porciani)

### Forward-modelling cosmological Inference

![](_page_54_Figure_1.jpeg)

Constrained particle-mesh simulation of real 2Mass++ survey: single realisation (Lavaux & Jasche 2018)

- **★** Generate realisations of the initial conditions (density field) sampling model parameters
- **★** Evolve these to current epoch
- **★** Apply appropriate *bias* recipe and data model to compare directly to data
- ★ Pioneered by B.Wandelt group (
- **★** Simplified version:Wiener filtering (e.g., Granett & VIPERS Team 2015; Estrada+ 2022)

### Cosmic voids statistics capture n-point information

![](_page_55_Figure_1.jpeg)

#### Alternative "compression" statistics, e.g., the Wavelet Scattering Transform

(Valogiannis & Dvorkin 2021, 2022; see Cheng & Menard 2021 for pedagogical introduction)

![](_page_56_Figure_2.jpeg)

- ★ Filter the galaxy field with appropriate wavelet kernel, compare to numerical simulations
- $\bigstar$  Applied to real data (BOSS)
- ★ "Field transformation" techniques (Neyrinck+ 2009; Carron & Szapudi 2013, see also Biagetti+ arXiv:2009.04819)
- ★ Caveat I: require large suites of numerical simulations, covering variety of cosmologies
- ★ Caveat 2: require comparing to simulated "galaxies" (e.g., marginalise over HOD parameters)

### Making galaxies into (simulated) dark matter haloes

I. Hydrodynamical simulations

2. Semi-analytic models

#### 3. Halo Occupation Distribution (HOD) models

4. Sub-Halo Abundance Matching

(Image credit: R. Kaehler)

# Using SHAM to match SDSS clustering to $\Lambda$ CDM down to fully nonlinear scales

(He, Guzzo, Li & Baugh 2018)

![](_page_58_Figure_2.jpeg)

(also, e.g., Granett+ 2019; Girelli+2020; Carella+2022 for similar applications)

![](_page_58_Figure_4.jpeg)

Capture the full scale / order clustering information altogether, through a Machine Learning approach?

# Importance of developing ML expertise: e.g., (I) data mining, classification / regression

#### Estimate galaxy meta-properties, as **photometric redshifts** and **stellar masses**

![](_page_60_Figure_2.jpeg)

(Bisigello & Euclid Consortium, 2022, submitted)

... or **redshift distributions** by stacking low SNR spectra, matched through photometric colours...

![](_page_60_Figure_5.jpeg)

(Cagliari, Granett & Euclid Consortium 2021)

# Importance of developing ML expertise: (ii) *emulators* to accelerate cosmological inference

(Bonici, Biggio, Carbone & Guzzo, 2022, MNRAS, submitted)

![](_page_61_Figure_2.jpeg)

#### LSS COSMOLOGY IN THE NEXT 20 YEARS

Numerical simulations

![](_page_62_Picture_2.jpeg)

Large-scale structure cosmological inference CMB temperature fluctuations and polarisation experiments

Origin of cosmic acceleration, tests of General Relativity

Constraints on the standard model of particle physics (neutrino masses, dark

- We do have a **Standard Cosmological Model**, which however poses several challenges to fundamental physics
- Future observations will directly tackle these problems and may indicate failures in the ΛCDM paradigm
- Such expectations call for unprecedented accuracy in both measurements and model predictions (a different mindset, actually)
- At the same time, **new methods and techniques** are important to fully harvest all cosmological information
- The expertise required is present in INAF and covers different probes, but barely so: we are a few, stretched across different fields
- In some fields such **expertise in Italy is relatively recent**, which may lead to a limited perception of its role and value
- Data is coming tomorrow!

# The end