Milky Way very young low mass stars unveiled by machine learning and Gaia EDR3

Loredana Prisinzano INAF Osservatorio Astronomico di Palermo

Milky Way very young low mass stars unveiled by machine learning and Gaia EDR3

Astronom

MAF Osservatorio Astronomico di Palermo

Stellar evol ong the HR Gaia diag MW-Gaia WG2/1 Hybrid Workshop Naples, 20-23 September 2022

e-mail: sorecand of 1

INAF

https://doi.org/0105/0004/636/000245580

A&A 664. ATT5 (2022) QL Prisintano et al. 202

Lagoon

Why should we study young low mass stars?

Kerr et al. 2021 Gaia DR2, 333 pc t<50 Myrs

Zari et al. 2018 Gaia DR2, 500 pc t< 20 Myrs

Stars form in Star Forming Regions (SFR) in the Galactic Disk

- Spiral Arms characterization
- cluster IMF, dynamics, Star
 Formation History
- planet and star formation

Why young low mass stars? they represent the bulk of the SFR (>80% only M-stars, Lada+08)

Gaia EDR3 data: a revolutionary understanding

Low mass young star detection is very challenging:

- faint and reddened
- hard selection in optical bands
- biased membership criteria
 (IR, X-rays, spectroscopy)

Excellent Gaia photometry & astrometry allow us

a systematic and homogeneous detection of very

young stars.

No biases towards WTTS or CTTS stars (at least when they emit in the optics)

Our census is extended up to 2kpc

Photometric selection

Gaia

all-sky (|b<30|) Gaia data in the M_G vs. G-G_{RP} region compatible with PMS stars (ages t<10 Myr)

no reddening correction applied

DBSCAN = Density-Based Spatial Clustering of Applications with Noise

- Unsupervised Machine Learning clustering algorithm: over-densities in 5D (*I*, *b*, π , μ_{α} , μ_{γ})
- ALL-SKY Multiple GRID of 5° x 5° boxes shifted by 1°
- parameters: ϵ ={0.1,0.2, 0.3, ...,9.0} distance threshold

minPts={5, 10, 15, ...,50} min. # objects

28 SFRs t<10 Myr 8 OCs 10Myr<t<100Myr 16 OCs t>100 Myr

old clusters partially included for the photometric selection (reddening effects, G-RP colors)

Results: finding star forming regions

Classification	#Stars	#Clusters	Flag
t< 10 Myr	124 440	354	1 - 28
10 Myr < t < 100 Myr	65 863	322	29 - 36
t > 100 Myr	43 936	524	37 - 52
Phot. unphysical aggregates	68 491	250	< 0
Unclassified	147 119	5 887	<0
Cluster <i>Gaia</i> CMD <i>Classification</i> <i>Classification</i> <i>Coarse</i> age <i>Classification</i> <i>Classification</i>			

Results: Density map of the SFRs

face on and edge on projections on the Gal. Plane

first map of stars younger than 10 Myrs up to ~1.5-2 Kpc from the Sun with Gaia EDR3

peripheral regions of known SFRs included!
 cluster dynamics, IMF and SF History
 overview of the solar neighborhood Galactic structure

Aitoff projection in Galactic coordinates

The Orion complex case

This work

Spitzer Space Telescope Survey of Orion A and B Mol. clouds: 3479 YSOs

2612 in Gaia DR3 (75%)

among those compliant with our photometric selection, 94% are in our catalog

High efficiency of Gaia data

The Orion complex case

This work

Gaia DR2 and HDBSCAN (Kounkel et al. 2019)

Our results suggest DBSCAN more suitable than HDBSCAN to retrieve SFRs

Example 2: the Sco-OB2 complex - 20-30 Myr old

UCL LCC V1062 Sco candidates Latitude 2 UCL/LCC-only candidates 340° 320 300 Galactic Longitude

U Sco/Oph/Lup candidates

This work

Luhman 2022, Gaia EDR3

Conclusions

We performed a blind search of SFRs using Gaia EDR3 data

- 124 440 YSOs within 354 SFRs (distance \leq 2Kpc)
- 65 863 YSOs in clusters with 10 Myr<t<100 Myr (distance \leq 500 pc)

crucial for future studies on Star Formation History, cluster dynamics, IMF detailed studies of circumstellar disk evolution, targets for direct imaging of young giant planets

Census completeness: >85% in very rich and concentrated clusters; ~50% in very low density clusters (e.g. Taurus-Auriga)
Binarity: at distances ~100, 200 pc, a loss of ~35% is estimated due to the RUWE selection

- The overall distribution of YSOs in SFRs with d < 600 pc traces a complex 3D pattern
- Evidence of a projected inclined structure, traced by the Orion, Vela OB2 and Rho Ophiuchi, Serpens, Lacerta OB1 and Perseus
 - Such structure is broadly consistent with the Alves et al. (2020) findings
 - We confirm that the space distribution of < 10 Myr low-mass stars is more structured than the Gould Belt

