X-Shooter Characterization of YSOs selected with Gaia DR2

Fatemeh Zahra Majidi

University of Padova, INAF-Padova, Italy

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Contents

- Identifying the new members of Lupus I cloud
- Our motivation for a deeper investigation of this region
- Criteria for selecting new members of Lupus I
- Role of Gaia DR2
- Results of full characterization of the new members of Lupus I
- Conclusions

Collaborators: J. M. Alcala', A. Frasca, S. Desidera, G. Beccari, et al. (INAF + ESO Garching)

X-Shooter Characterization of New Wide Companions of Known Stellar Systems

Wide companions (1000au-1pc) are important

- Benchmarks for studying stellar/planet evolution (multiplicity statistics, dynamical environment of stars w/wo planets, w/wo disks)
- · Constraining the age of the associated stellar system

Selected based on their similar kinematic properties to the central star (Gaia DR2) that is already a member of a stellar association

Characterizing unknown objects belonging to a stellar association is important

- New members will be identified
- We can constrain the age of the association more accurately
- Disk fraction of the association can be studied

X-Shooter

- The first 2nd generation instrument of the ESO Very Large Telescope (VLT)
 - Very efficient
 - Single-target
 - Intermediate-resolution spectrograph (R ~ 4000–17,000, depending on wavelength and slit width)
 - In a single exposure, covers the spectral range from 300 to 2500 nm

Wavelength range 300-2500 nm split over 3 arms **UV-Blue** arm Range: 300-550 nm in 11 orders Resolution: 4500 (1" slit) 4k x 2k E2V CCD Detector: Visual-red arm Range: 550-1000 nm in 14 orders Resolution: 7000 (1" slit) 4k x 2k MIT/LL CCD Detector: Near-IR arm Range: 1000-2500 nm in 16 orders Resolution: 4500 (1" slit) Detector: 2k x 1k Hawaii 2RG Slit length 12" Two high efficiency dichroics Beam separation Atmospheric dispersion compensation In the UV-Blue and Visual-red arms Integral field unit 1.8" x 4" reformatted into 0.6" x 12"

GQ Lup's new wide companion candidate, GQ Lup C

Alcala', Majidi, Desidera, et al. 2020 (A&A)

- a wide (projected separation ~16".0, or 2400 AU) companion of the GQ Lup A-B system
- a bonafide low-mass (~0.15 M ⊙) young stellar object (YSO) with stellar and accretion/ejection properties typical of Lupus YSOs of similar mass
- with kinematics consistent with that of the GQ Lup A-B system
- the disk of the target was resolved on the HST images (Lazzoni et al. 2020)
- (roughly aligned with the disk of the GQ Lup)
 ** Both of them are roughly aligned with the Lupus I dust filament containing GQ Lup.
- Not-conclusive: a possible scenario for the formation of the triple system is that GQ Lup A and C formed by fragmentation of a turbulent core in the Lup I filament, while GQ Lup B (BD companion of GQ Lup A at 0".7), formed in-situ by the fragmentation of the circumprimary disc
 - -- The recent discoveries that stars form along cloud filaments would favor the scenario of turbulent fragmentation for the formation of GQ Lup A and C.

5 < parallax < 8 (mas) -21 < pmra < -10 (mas/yr) - 27 < pmdec < -18 (mas/yr)

5 < parallax < 8 (mas) -21 < pmra < -10 (mas/yr) - 27 < pmdec < -18 (mas/yr) ** 247 objects

Galli et al. 2020

- CMD (more consistent with Lupus I core members)
- Closer/further with respect the filaments of Lupus I
- Showing H_ α excess in OmegaCAM

43 objects proposed to 105.20P9.001 ESO observing run (filler program)

** We only got 12 observed eventually with X-Shooter

Maiidi et al. 2020

20

0

C

Our main motivation for full characterization of the targets

- Asses their physical properties + RV + v sin i
- Age determination is important (2MASS J1815-3249)

Problem

- Disentangling the members of the UCL (~15 Myr) and Lupus I (~ 2 Myr)

Membership criteria for young, star-forming regions

- Consistent kinematic properties and RV
- Age
- Containing Lithium

Name	parallax (mas)	μ_{α} (mas/yr)	μ_{δ} (mas/yr)	RV (km/s)
2MASS J1815-3249 V4046Sgr GSC 7396-00759	13.12±0.054 13.81±0.064 13.99±0.052	1.07±0.095 3.49±0.11 3.08±0.10	-52.74 ± 0.078 -52.75 ± 0.087 -52.64 ± 0.08	-20.1±2.0 -6.94±0.16 -6.10±0.5

11

Not always this straightforward

Membership criteria for young, star-forming regions

- Consistent kinematic properties and RV

Age (Lupus ~ 2 Myr)

** AKC2006 18 and AKC2006 19 in Lupus I (Frasca et al. 2017)

Name	α (J2000)	δ (J2000)	ω	μ_{lpha*}	μ_{δ}	RV	Prob	age
	(h:m:s)	(d:m:s)	(mas)	(mas/yr)	(mas/yr)	$(\rm km/s)$	%	Myr
AKC2006 18	15 41 40.81	-33 45 18.86	6.69(0.35)	-18.84(0.33)	-22.06(0.27)	9.10(2.30)	95.3	8.3
AKC2006 19	$15 \ 44 \ 57.89$	-34 23 39.36	6.54(0.14)	-18.94(0.089)	-22.75(0.06)	9.60(2.10)	97.0	8.0

- Containing Lithium : Sz 94 in Lupus III cloud (Frasca et al. 2017)

** Assessing all the physical properties of the targets is important and then decide on a target's membership

Name	A (N	.ge (lyr) (Membership (UCL/Lup I)	Active (yes/no)	Accreting (yes/no)	Contains Liı (yes/no)	Rotation (F/S)	A_v (mag)	Conclusion
2MASS J	1	1	Lup I	yes	no	yes	s	0	Genuine member of Lup I
Sz		1	Lup I	yes	yes	yes	s	0.5	Genuine Lup I member +
									wide companion candidate
TYC 733		5	Lup I	yes	no	yes	s	0.7	Genuine member of Lup I +
		-					-		wide companion candidate
2MASS J		9	Ŷ	yes	yes	no	s	1.75	Unresolved binary $(?)$ +
									wide companion candidate
2MASS J		8	Lup I	yes	no	yes	S	0.5	New member of Lup I
2MASS J	0	.7	Lup I	yes	yes	?	s	0.75	Genuine member of Lup I
2MASS J	9	.5	Lup I	yes	yes	yes	S	0	New member of Lup I
UCAC4 2		4	Lup I	yes	no	yes	s	0.5	Genuine member of Lup I
Gaia DR		8	Lup I	yes	no	yes	F	0	New member of Lup I
2MASS J		2	Lup I	yes	no	no	F	0	Genuine member of Lup I
UCAC4 2		8	UCL	yes	no	no	s	0	New member of UCL
$Gaia \ \mathrm{DR}$		9	?	yes	no	no	\mathbf{F}	0	?

- Only 1 UCL member + 2 unknown (but interesting) targets
- Ages older than 2 Myrs
- 1 new member without Lithium
- 4 accretors (1 escaped OmegaCAM catalog) + the rest chormospherically-dominant

Cyan dots are accretors Red dots are chormospherically-dominant objects

+ new member : K-type object with H_α in absorption

Green circles are our targets Red circles are Lupus I core members

Red line: Vorobyov & Basu (2009), based on modelling self-regulated accretion by gravitational torques in self-gravitating disks. Magenta line: the prediction of disk fragmentation model by Samatellos & Herczeg (2015).

Conclusions

Lupus I has more (interesting) members that are yet unknown (new conclusion)
 In order to find these members, various surveys and follow-up programs are required due to the wide variety of Lupus members (old conclusion)
 Gaia catalogs are essential for conducting follow-up programs on finding new

members of stellar associations (reminder?)

Future plans

- Resolving the disks of our targets with other instruments (SED + photometry)

– Continuing the search for the unknown members of Lupus complex

