Precise asteroseismic ages from young pulsating stars

Presented by

Simon J. Murphy ARC Future Fellow

Main collaborators:

Tim Bedding, Tim White (USyd) Meridith Joyce (STScl/Konkoly) Daniel Huber (U. Hawaii) Warrick Ball (U. Birmingham) ... and many others!

University of **Southern Queensland**

Overview: Young Stars

Age map of Sco-Cen star-forming region (Pecaut & Mamajek 2016)

Example: Pleiades ages

- Wide range of isochrone ages. Strong dependence on treatment of rotation

100 Myr	non-rotating isochrones
100 – 160 Myr	rotating isochrones

(Meynet et al. 1993) (Brandt & Huang 2015b, Gossage et al. 2018)

Two main effects of rotation

- 1. Star becomes oblate. Gravity darkening: T_{eff} and L depend on observing angle.
 - deformation goes as ${oldsymbol \Omega}^2$
 - Brighter poles. Cooler, darker equatorial region.
 - Displacement with respect to isochrones.
- 2. Extra mixing of material
 - fresh hydrogen mixed into the core
 - lengthens the main sequence lifetime

Example: Pleiades ages

Overly precise Lithium depletion ages. Strong dependence on sample selection, model physics

130 ± 20 Myr	lithium depletion boundary (LBD)	(Meynet et al. 1993)
112 ± 5 Myr	LDB using brown dwarfs	(Dahm 2015)
~ 100 Myr	As above, but accounting for magnetism	(Dahm 2015)

- Large systematic uncertainties with LDB ages (Garret & Pinsonneault 2014, 2015a,b)
 - The effect of differential rotation
 - The effect of starspots
 - Systematic uncertainties of 10-20% for 100-Myr clusters.

- Most ages for the Pleaides are in the range 100 160 Myr.
- Only one asteroseismic study so far (Fox-Machado et al. 2006)
 - They used a hard age prior of 70 100 Myr :(

Today's message:

Asteroseismology can provide precise stellar ages

- Only weak dependence on typical observables: "ballpark estimates"
 - Dust obscuration is not a problem.
 - Works for single stars.
 - Can measure and properly account for rotation.
- Model physics is always a problem, but we can improve it (e.g. eclipsing binaries)

We can improve cluster age benchmarks and improve the whole age scale

Project Aim

A breakthrough Bedding et al. Nature (2020)

Article

Very regular high-frequency pulsation modes in young intermediate-mass stars

https://doi.org/10.1038/s41586-020-222	6-8
Received: 17 July 2019	
Accepted: 27 February 2020	
Published online: 13 May 2020	
Check for updates	

Timothy R. Bedding^{1,2}, Simon J. Murphy^{1,2}, Daniel R. Hey^{1,2}, Daniel Huber³, Tanda Li^{1,2,4}, Barry Smalley⁵, Dennis Stello^{2,6}, Timothy R. White^{1,2,7}, Warrick H. Ball^{2,4}, William J. Chaplin^{2,4}, Isabel L. Colman^{1,2}, Jim Fuller⁸, Eric Gaidos⁹, Daniel R. Harbeck¹⁰, J. J. Hermes¹¹, Daniel L. Holdsworth¹², Gang Li^{1,2}, Yaguang Li^{1,2,13}, Andrew W. Mann¹⁴, Daniel R. Reese¹⁵, Sanjay Sekaran¹⁶, Jie Yu¹⁷, Victoria Antoci^{2,18}, Christoph Bergmann⁶, Timothy M. Brown¹⁰, Andrew W. Howard⁸, Michael J. Ireland⁷, Howard Isaacson¹⁹, Jon M. Jenkins²⁰, Hans Kjeldsen^{2,21}, Curtis McCully¹⁰, Markus Rabus^{10,22}, Adam D. Rains⁷, George R. Ricker^{23,24}, Christopher G. Tinney⁶ & Roland K. Vanderspek^{23,24}

Asteroseismic large spacing, Δv , as a new observable for dSct stars.

Young delta Scuti pulsators

TESS data: HD139614 is a dSct star

 $\Delta v = 6.83 \text{ c/d}$ is quite large. Goes as $\rho^{0.5}$. Star is very dense, hence young.

An aside: Echelle Diagrams

échelle is the French word for "ladder"

gif credit: Daniel Hey & Adam Hamilton https://github.com/danhey/echelle

Echelle for HD139614, mode ID.

Modelling method: χ^2 minimization *

*Technically not a true χ^2 distribution. "s_score" or "seismic χ^2 "

Grid exploration. MESA + GYRE

Grid exploration. MESA + GYRE

stellar models

[>]pulsation calculations

Mass (Msun)=1.520±0.018

2.2 2.1

2.0 שרו 1.9 $\alpha_{MLT} = 1.90 \pm 0.16$

Grey = all (10⁵) evaluated models Colour = all points at $\chi^2 < 1$ Red = convex hull for classical box (i.e. agrees with known Teff, logL)

Works for many young stars / associations

Remodelled stars from Bedding et al. (2020)

Back to the Pleiades

Using custom light curves from K2 data, made by Tim White

Custom light curves

The University of Sydney

Back to the Pleiades

Before and after, for three of the five stars

Back to the Pleiades

Using custom light curves from K2 data, made by Tim White

Mode identification

Modelling with MESA & Gyre

Good matches! BUT best-fitting model is always the oldest, most massive, most metal rich. = LEAST DENSE model

What about accretion histories?

Disk-mediated accretion alters the pre-main-sequence burning; evolutionary history.

This leaves an imprint on the stellar pulsations, but is it superseded by rotation?

Steindl et al. 2022 (Nature Communications)

Pleiades, one more time...

Summary

- Mode identification is now tractable for young, intermediate-mass stars.
- Asteroseismic ages for young stars can (re-)calibrate stellar ages
 - Cluster ages are often determined relative to each other
 - Improve your benchmarks, and you improve the whole system.
- HD139614 is young, planet-forming disk. Still on the pre-MS.
 - Asteroseismic age 10.7 Myr, 7% uncertainty.
- The Pleiades are an exciting "new" target.
- Rotation is very important and troublesome.

Details in:

- Bedding et al. (2020) Nature 581, 147
- Murphy et al. (2021) MNRAS 502, 1633
- Murphy et al. (2022) MNRAS 511, 5718

Look out for:

- Age dispersion measurements of Cepheus Far North (Kerr et al. 2022, in rev.)
- TESS observations of dSct stars in the Pleiades (Bedding et al., in prep.)