Milky Way helium enrichment constrained by red clump stars

Emma Willett

Andrea Miglio, Marco Tailo

Stellar ages are important

Stellar physics

Galactic Archaeology

Exoplanet systems

- Helium spectral lines are difficult to measure
- Usually, we assume a helium-to-metal enrichment ratio

$$Y = Y_P + \frac{\Delta Y}{\Delta Z} Z$$

But there are many open questions...

- Helium spectral lines are difficult to measure
- Usually, we assume a helium-to-metal enrichment ratio

$$Y = Y_P + \frac{\Delta Y}{\Delta Z} Z$$

But there are many open questions...

- Range of methods...
 - Clusters, K-dwarf main sequence, extragalactic HII, asteroseismic glitches
- ...Give many answers
 - Usually $\Delta Y / \Delta Z \approx 2 \pm 1$
 - But you can find $0.5 \rightarrow 5$
 - http://www.pas.rochester.edu/~emamajek/m emo_dydz.html

- Is a single enrichment ratio valid?
 - Spread at low-Z
 - Very low Y_P

RC luminosity and Y

- Low mass: degenerate core on the RGB
- He-ignition delayed until critical core mass
 ~ independent of total mass, [Fe/H]

Very similar core mass

- \rightarrow Very similar central conditions
- \rightarrow very similar luminosity

MESA

Models

- Grid with no assumed $\Delta Y / \Delta Z$
- M spacing = $0.1M_{\odot}$
- [Fe/H] spacing = 0.1 dex
- Independent Y at each grid point

Helium – luminosity relationship

Comparing models and observations

Comparing models and observations

- Evolution to high luminosities is important, but not easy to model
- Use MC for a non-parametric approach
- 1. Make samples in fractional age

- Evolution to high luminosities is important, but not easy to model
- Use MC for a non-parametric approach
- 1. Make samples in fractional age
- 2. Constrain Y(L)

- Evolution to high luminosities is important, but not easy to model
- Use MC for a non-parametric approach
- 1. Make samples in fractional age
- 2. Constrain Y(L)
- 3. Compare realisations of observed L

Very naïve look suggests $\Delta Y / \Delta Z \approx 1.5$

 \rightarrow how to make best use of the Y distribution

More on Gaia luminosities

Outlook

- Gaia luminosities make helium inference possible

Outlook

- Gaia luminosities make helium inference possible
- To do: validate a statistical technique to constrain $\Delta Y / \Delta Z$

Outlook

- Gaia luminosities make helium inference possible
- To do: validate a statistical technique to constrain $\Delta Y / \Delta Z$
- And then... Extend to K2 to map helium around the galaxy

Extras

Effect of mass

Effect of Composition

- Increase Y
- \hookrightarrow Increase internal temperature
- \hookrightarrow Decrease $M_{core} \rightarrow$ Decrease L
- \hookrightarrow Increase L

- Increase Z
- \hookrightarrow Heat core more quickly
- \hookrightarrow Decrease $M_{core} \rightarrow$ Decrease L
- → *Also:* increase envelope opacity
- \hookrightarrow Decrease L