Hunting for black holes around massive stars with Gaia

in collaboration with Prof. Hugues Sana Dr. Tomer Shenar

Evolution towards compact object merger

Evolution towards compact object merger

Oов 0 -	\checkmark	
$\cos _{\substack{\text { mass } \\ \text { traner }}}^{1} \bigcirc$	$\substack{\text { Common } \\ \text { enverope }}$	$\mathrm{OB}=$ massive main-sequence star $\left(M_{\mathrm{i}}>8 M_{\odot}\right)$
		WR $=$ Wolf Rayet
- ${ }^{\text {cóa }}$		$\mathrm{SN}=$ supernova
	. вннвн	BH = black hole
${ }^{8+8 H} \quad O$	(.) Merger	Merger = gravitational wave source
$\cos _{\substack{\text { xinay } \\ \text { biny }}}^{2}$		

Evolution towards compact object merger

Evolution towards compact object merger

Evolution towards compact object merger

Mass
transfer
SN
WB OB

Evolution towards compact object merger

		$\mathrm{OB}=$ massive main-sequence star $\left(M_{\mathrm{i}}>8 M_{\odot}\right)$
		WR $=$ Wolf Rayet
\bigcirc		SN = supernova
	. в внвн	BH = black hole
¢ ${ }^{\text {в }}$		Merger = gravitational wave source
$\underbrace{1+2}_{\substack{\text { xamy } \\ \text { binay }}}$		

Evolution towards compact object merger

Evolution towards compact object merger

$\underset{\substack{\text { Mass } \\ \text { Manser }}}{0.08}$		$\mathrm{OB}=$ massive main-sequence star $\left(M_{\mathrm{i}}>8 M_{\odot}\right)$
wrob - O		WR $=$ Wolf Rayet
SN		SN = supernova
	-. вннвн	BH = black hole
${ }^{\circ 8+\text { вн }}$ - O		Merger = gravitational wave source

Evolution towards compact object merger

${ }^{0+08} \quad \circ{ }^{\circ}$		$\mathrm{OB}=$ massive main-sequence star
		$\left(M_{\mathrm{i}}>8 M_{\odot}\right)$
WR + or - 0		WR = Wolf Rayet
sn $\quad \stackrel{\downarrow}{0}$		SN = supernova
	. вннвн	BH = black hole
вн : О		Merger = gravitational wave source

Evolution towards compact object merger

$\underset{\substack{\text { mass } \\ \text { tranter }}}{\text { O+ов }} \bigodot_{\square}^{0}$		$\mathrm{OB}=$ massive main-sequence star $\left(M_{\mathrm{i}}>8 M_{\odot}\right)$
wrob - 0		WR $=$ Wolf Rayet
-		SN = supernova
	- вннвн	BH = black hole
вн : О		Merger = gravitational wave source

Evolution towards compact object merger

> Direct collapse (no mass loss) and no kick:
> predicted $\sim 3 \%$ of OB binaries have BH companion (Langer et al. 2020, ~ 1200 OB+BH in Milky Way)

Evolution towards compact object merger

Direct collapse (no mass loss) and no kick:

predicted $\sim 3 \%$ of OB binaries have BH companion (Langer et al. 2020, ~1200 OB+BH in Milky Way)

Currently: handful of candidates of dormant OB+BHs
(e.g. Mahy et al. 2022, Shenar et al. $2022 \rightarrow$ LMC)
??? Where are the dormant BHs ???

Uncertain BH-formation physics

Different BH-formation scenarios

Different distributions in e.g. P

Uncertain BH-formation physics

Different BH-formation scenarios

Different distributions in e.g. P
but also in eccentricity and mass of black hole

+ different number of systems
(e.g. stronger kick \rightarrow easier disrupted)

Where are the dormant BHs?

- Do BH s receive kicks? $\rightarrow \mathrm{OB}+\mathrm{BH}$ systems disrupted
- Mass loss during BH-formation? \rightarrow supernovae
- Other detection methods? \rightarrow spectroscopy is challenging

Gaia astrometry bringing new opportunities

What does Gaia see?

"Proper motion" - due to star's orbit in Milky Way

What does Gaia see?

Different kind of binaries

- Gaia (astrometry) can distinguish between single stars and binaries
- Can Gaia see the difference between $\mathrm{OB}+\mathrm{BH}$ and $\mathrm{OB}+\mathrm{OB}$?
- Unresolved binaries \rightarrow Measures photocentre motion

Taking a look at the motion of the photocentre

- $\mathrm{m}_{2}=\mathrm{BH}$

- $\mathrm{m}_{2}=$ luminous

Taking a look at the motion of the photocentre

- $\mathrm{m}_{2}=\mathrm{BH}$
- Photocentre motion = a_{1}

- $\mathrm{m}_{2}=$ luminous
- Photocentre motion $\neq a_{1}$
- Dependent on mass/intensity ratio

Different kind of binaries

- Gaia (astrometry) can distinguish between single stars and binaries
- Can Gaia see the difference between $\mathrm{OB}+\mathrm{BH}$ and $\mathrm{OB}+\mathrm{OB}$?
- Unresolved binaries \rightarrow Measures photocentre motion
\rightarrow Yes! By looking at the size of the photocentre motion

The identification method

The Astrometric Mass-Ratio Function
$=$ AMRF (shahaf et al. 2019)

Theoretical
Observational

The Astrometric Mass-Ratio Function

$=$ AMRF $_{\text {(Shahaf et al. 2019) }}$

Theoretical
Observational
$\mathcal{A}=\frac{q}{(1+q)^{2 / 3}}\left(1-\frac{S(1+q)}{q(1+S)}\right)$
$\mathrm{q}=$ mass ratio $=$
least luminous / most luminous
$\mathrm{S}=$ Intensity ratio (mass dependent)

- predict the maximum
photocentre motion for different kinds of systems

The Astrometric Mass-Ratio Function

$=$ AMRF $_{\text {(Shahaf et al. 2019) }}$

Theoretical
$\mathcal{A}=\frac{q}{(1+q)^{2 / 3}}\left(1-\frac{S(1+q)}{q(1+S)}\right)$
$\mathrm{q}=$ mass ratio $=$
least luminous / most luminous
$\mathrm{S}=$ Intensity ratio (mass dependent)

Observational

$$
\mathcal{A}=\frac{\alpha}{\omega}\left(\frac{M_{1}}{M_{\odot}}\right)^{-1 / 3}\left(\frac{P}{\mathrm{yr}}\right)^{-2 / 3}
$$

$\alpha=$ semi-major axis of the ellipse traced by the photocentre motion $=$ astrometric signal
$\varpi=$ parallax
$M_{1}=$ mass of the most luminous star
$P=$ period

- predict the maximum photocentre motion for different kinds of systems

The Astrometric Mass-Ratio Function

$=$ AMRF $_{\text {(Shahaf et al. 2019) }}$

Theoretical
$\mathcal{A}=\frac{q}{(1+q)^{2 / 3}}\left(1-\frac{S(1+q)}{q(1+S)}\right)$
$\mathrm{q}=$ mass ratio =
least luminous / most luminous
$S=$ Intensity ratio (mass dependent)

- predict the maximum photocentre motion for different kinds of systems

Observational
$\mathcal{A}=\frac{\alpha}{\omega}\left(\frac{M_{1}}{M_{\odot}}\right)^{-1 / 3}\left(\frac{P}{\mathrm{yr}}\right)^{-2 / 3}$
$\alpha=$ semi-major axis of the ellipse traced by the photocentre motion $=$ astrometric signal
$\varpi=$ parallax
$M_{1}=$ mass of the most luminous star $P=$ period
\rightarrow Gaia astrometric binary solutions

The Astrometric Mass-Ratio Function

$=$ AMRF (Shanafe etal 2019)

Theoretical (non-BH systems)
$\mathcal{A}=\frac{q}{(1+q)^{2 / 3}}\left(1-\frac{S(1+q)}{q(1+S)}\right)$
$\mathrm{q}=$ mass ratio =
least luminous / most luminous
$S=$ Intensity ratio (mass dependent)

Observational
$\mathcal{A}=\frac{\alpha}{\varpi}\left(\frac{M_{1}}{M_{\odot}}\right)^{-1 / 3}\left(\frac{P}{\mathrm{yr}}\right)^{-2 / 3}$
$\alpha=$ semi-major axis of the ellipse traced by the photocentre motion = astrometric signal
$\varpi=$ parallax
$M_{1}=$ mass of the most luminous star

- predict the maximum photocentre motion f

$\mathrm{OB}+\mathrm{BH}$

 kinds of systems
How many OB+BHs can we find with Gaia?

Creating an OB+BH population

- Sample of OB + BHs from Langer et al. (2020)
- Direct collapse (no mass loss) and no kick
- Draw distances from known OB catalogue: Alma Luminous Star catalogue II = ALS II (Pantaleoni González et al. 2021)
- Redden \rightarrow magnitudes

Which are detectable/identifiable?

Which are detectable/identifiable?

Which are detectable/identifiable?

Estimated numbers

- ALS II: >13000 sources (Pantaleoni González et al. 2021)
- $\sim 70 \%$ of massive stars in binaries (Sana etal. 2012)
- Of which $\sim 3 \%$ BH companion (Langer etal. 2020)
$\rightarrow \sim 200$ OB+BH systems can be identified

Predictions (Janssens et al. 2022):
 With Gaia we can find ~ 200 OB+BH systems AND
 learn about BH-formation scenarios

Results from DR3

Astrometric DR3 binaries in the HRD

Astrometric DR3 binaries in the HRD

Astrometric DR3 binaries in the HRD

ALS II astrometric binary sources in DR3

ALS II sources: 100\%
~ 10

ALS II astrometric binary sources in DR3
ALS II sources: 100\%
~ 10

DR3 non-binaries :
99\%
Astrometric:
0.1\%

Eclipsing:
0.45 \%

Spectroscopic:
0.45 \%

ALS II astrometric binary sources in DR3
ALS II sources: 100\%

DR3 non-binaries :
99\%

No OB+BH candidates
sing:

No OB + BH detections

\rightarrow information on BH-formation scenario??

No OB + BH detections

\rightarrow information on BH-formation scenario??
No

Why no information on BH-formation scenario?

Basic selection criterion for Gaia DR3 astrometric solution:

$$
\varpi / \sigma_{\varpi}>20000 / P_{\text {days }}
$$

e.g. $\quad P=100 \mathrm{~d} \rightarrow \varpi / \sigma_{\varpi}=200 \rightarrow$ severe restriction in volume (most of $O B+B H$ s expected with $P=100-300 d$)

Why no information on BH-formation scenario?

Basic selection criterion for Gaia DR3 astrometric solution:

$$
\varpi / \sigma_{\varpi}>20000 / P_{\text {days }}
$$

New predictions using ϖ / σ_{ϖ}

- 0.14% of simulated $\mathrm{OB}+\mathrm{BH}$ s detected ($0-1 \mathrm{OB}+\mathrm{BH}$)
- 0.3% of simulated $O B+O B$ binaries detected ($\sim 20 \mathrm{OB}+\mathrm{OB}$)
\rightarrow In line with ~ 10 ALS II sources having astrometric binary solution...

To conclude

- Non-detection of OB+BHs \rightarrow no information on

BH -formation scenario

- Need much less conservative constraint on the actual Gaia data in future data releases to learn about
- BH-formation physics
- the formation of $\mathrm{BH}+\mathrm{BH}$ mergers

With Gaia we can find ~ 200 OB+BH systems AND
learn about BH -formation scenarios IF constraints are less conservative in future data releases

Simulated astrometric signals

Parallax precisions of the ALS II sources

Unknown BH-formation physics

- Eccentricity distributions \rightarrow information about kicks

Unknown BH-formation physics

- Period distribution \rightarrow information about kicks

Different kick mechanism (stronger kicks)

Different explosion mechanism

Unknown BH-formation physics

- Eccentricity distribution \rightarrow information about kicks
- Period distribution \rightarrow information about kicks
- Mass of the black hole \rightarrow information on collapse

The Astrometric Mass-Ratio Function

$=$ AMRF $_{\text {(Shahaf et al. 2019) }}$

Theoretical
$\mathcal{A}=\frac{q}{(1+q)^{2 / 3}}\left(1-\frac{S(1+q)}{q(1+S)}\right)$
$\mathrm{q}=$ photometric mass ratio $=$ least luminous / most luminous
$\mathrm{S}=$ Intensity ratio (mass dependent)

- predict the maximum photocentre motion for dif kinds of systems

The Astrometric Mass-Ratio Function

$=\mathrm{AMRF}$ Ishanafetal 2009

Theoretical
$\mathcal{A}=\frac{q}{(1+q)^{2 / 3}}\left(1-\frac{S(1+q)}{q(1+S)}\right)$
$\mathrm{q}=$ photometric mass ratio $=$ least luminous / most luminous
$\mathrm{S}=$ Intensity ratio (mass dependent)

- predict the maximum photocentre motion for diff ϵ kinds of systems

