Hunting for black holes around massive stars with Gaia

in collaboration with Prof. Hugues Sana Dr. Tomer Shenar

Soetkin Janssens

Naples - Sept. 2022

Gaia, ESA

Not on scale!!

Research Foundation Flanders Opening new horizons

OB = massive main-sequence star $(M_{\rm i} > 8M_{\odot})$ WR = Wolf Rayet SN = supernova BH = black holeMerger = gravitational wave source

OB = massive main-sequence star $(M_{\rm i} > 8M_{\odot})$ WR = Wolf Rayet SN = supernova BH = black holeMerger = gravitational wave source

Modified from Marchant et al. (2016)

OB = massive main-sequence star $(M_{\rm i} > 8 M_{\odot})$ WR = Wolf Rayet SN = supernova

BH = black hole

OB = massive main-sequence star ($M_{
m i} > 8 M_{\odot}$)

WR = Wolf Rayet

SN = supernova

BH = black hole

Modified from Marchant et al. (2016)

OB = massive main-sequence star $(M_{\rm i} > 8 M_{\odot})$ WR = Wolf Rayet

SN = supernova

BH = black hole

Common envelope WR + BH SN BH + BH Merger

Modified from Marchant et al. (2016)

OB = massive main-sequence star $(M_{\rm i} > 8 M_{\odot})$ WR = Wolf Rayet SN = supernova

BH = black hole

Common envelope WR + BH SN BH + BH Merger

Modified from Marchant et al. (2016)

OB = massive main-sequence star $(M_i > 8M_{\odot})$ WR = Wolf Rayet SN = supernova BH = black hole

Merger = gravitational wave source

OB = massive main-sequence star $(M_{\rm i} > 8M_{\odot})$ WR = Wolf Rayet SN = supernova BH = black holeMerger = gravitational wave source

OB = massive main-sequence star $(M_{\rm i} > 8M_{\odot})$ WR = Wolf Rayet SN = supernova BH = black holeMerger = gravitational wave source

: Observed

Direct collapse (no mass loss) and no kick: predicted ~ 3% of OB binaries have BH companion (Langer et al. 2020, ~1200 OB+BH in Milky Way)

Direct collapse (no mass loss) and no kick: predicted ~ 3% of OB binaries have BH companion (Langer et al. 2020, ~1200 OB+BH in Milky Way)

Currently: handful of candidates of dormant OB+BHs

(e.g. Mahy et al. 2022, Shenar et al. 2022 \rightarrow LMC)

??? Where are the dormant BHs ???

Uncertain BH-formation physics

Different BH-formation scenarios

Different distributions in e.g. P

Uncertain BH-formation physics

Different BH-formation scenarios

Different distributions in e.g. P

but also in eccentricity and mass of black hole

+ different number of systems (e.g. stronger kick → easier disrupted)

- Do BHs receive kicks? \rightarrow OB+BH systems disrupted
- Mass loss during BH-formation? \rightarrow supernovae
- Other detection methods? → spectroscopy is challenging

ESA

Gaia astrometry bringing new opportunities

What does Gaia see?

https://www.open.edu/openlearn/science-maths-technology/science/ph ysics-and-astronomy/gaia-taking-the-galactic-census

ESA

What does Gaia see?

https://www.open.edu/openlearn/science-maths-technology/science/ph ysics-and-astronomy/gaia-taking-the-galactic-census

- Gaia (astrometry) can distinguish between single stars and binaries
- Can Gaia see the difference between OB+BH and OB+OB?
 - \circ Unresolved binaries \rightarrow Measures photocentre motion

Taking a look at the motion of the photocentre

• m₂ = luminous

Taking a look at the motion of the photocentre

- m₂ = luminous
- Photocentre motion $\neq a_1$
 - Dependent on mass/intensity ratio

- Gaia (astrometry) can distinguish between single stars and binaries
- Can Gaia see the <u>difference between OB+BH and OB+OB</u>?
 Onresolved binaries → Measures photocentre motion

 \rightarrow Yes! By looking at the size of the photocentre motion

ESA

The identification method

= AMRF (Shahaf et al. 2019)

Theoretical

Observational

= AMRF (Shahaf et al. 2019)

Theoretical

$$\mathcal{A} = \frac{q}{(1+q)^{2/3}} \left(1 - \frac{S(1+q)}{q(1+S)} \right)$$

q = mass ratio = least luminous / most luminous S = Intensity ratio (mass dependent)

 predict the maximum photocentre motion for different kinds of systems

Observational

= AMRF (Shahaf et al. 2019)

Theoretical

$$\mathcal{A} = \frac{q}{(1+q)^{2/3}} \left(1 - \frac{S(1+q)}{q(1+S)} \right)$$

q = mass ratio = least luminous / most luminous S = Intensity ratio (mass dependent)

 predict the maximum photocentre motion for different kinds of systems **Observational** $\mathcal{A} = \frac{\alpha}{\varpi} \left(\frac{M_1}{M_{\odot}}\right)^{-1/3} \left(\frac{P}{\mathrm{yr}}\right)^{-2/3}$

 α = semi-major axis of the ellipse traced by the photocentre motion = astrometric signal ϖ = parallax M_1 = mass of the most luminous star P = period

= AMRF (Shahaf et al. 2019)

Theoretical

$$\mathcal{A} = \frac{q}{(1+q)^{2/3}} \left(1 - \frac{S(1+q)}{q(1+S)} \right)$$

q = mass ratio = least luminous / most luminous S = Intensity ratio (mass dependent)

 predict the maximum
 photocentre motion for different kinds of systems **Observational** $\mathcal{A} = \frac{\alpha}{\varpi} \left(\frac{M_1}{M_{\odot}}\right)^{-1/3} \left(\frac{P}{\mathrm{yr}}\right)^{-2/3}$

 α = semi-major axis of the ellipse traced by the photocentre motion = astrometric signal ϖ = parallax M_1 = mass of the most luminous star P = period

 \rightarrow Gaia astrometric binary solutions

OB+BH

= AMRF (Shahaf et al. 2019)

Theoretical (non-BH systems) $\mathcal{A} = \frac{q}{(1+q)^{2/3}} \left(1 - \frac{S(1+q)}{q(1+S)}\right)$

q = mass ratio = least luminous / most luminous S = Intensity ratio (mass dependent)

 predict the maximum photocentre motion f kinds of systems **Observational** $\mathcal{A} = \frac{\alpha}{\varpi} \left(\frac{M_1}{M_{\odot}}\right)^{-1/3} \left(\frac{P}{\mathrm{yr}}\right)^{-2/3}$

 α = semi-major axis of the ellipse traced by the photocentre motion = astrometric signal ϖ = parallax M_1 = mass of the most luminous star

eriod

•
1

Janssens et al.

How many OB+BHs can we find with Gaia?

	•
(2022)	Not on scale!!

- Sample of OB + BHs from Langer et al. (2020)
 - Direct collapse (no mass loss) and no kick
- Draw distances from known OB catalogue: Alma Luminous Star catalogue II = ALS II (Pantaleoni González et al. 2021)

11/18

• Redden \rightarrow magnitudes

Which are detectable/identifiable?

Which are detectable/identifiable?

Which are detectable/identifiable?

- ALS II: >13 000 sources (Pantaleoni González et al. 2021)
- ~ 70% of massive stars in binaries (Sana et al. 2012)
- Of which ~ 3% BH companion (Langer et al. 2020)

\rightarrow ~ 200 OB+BH systems can be identified

Predictions (Janssens et al. 2022): With Gaia we can find ~ 200 OB+BH systems AND learn about BH-formation scenarios

Results from DR3

Astrometric DR3 binaries in the HRD

Astrometric DR3 binaries in the HRD

Astrometric DR3 binaries in the HRD

ALS II astrometric binary sources in DR3

ALS II astrometric binary sources in DR3

ALS II astrometric binary sources in DR3

 \rightarrow information on BH-formation scenario??

16/18

 \rightarrow information on BH-formation scenario??

<u>No</u>

Why no information on BH-formation scenario?

Basic selection criterion for Gaia DR3 astrometric solution:

$$arpi/\sigma_arpi>20000/P_{
m days}$$

https://gea.esac.esa.int/archive/docu mentation/GDR3/pdf/GaiaDR3_docu mentation_1.1.pdf

e.g. P = 100d $\rightarrow \varpi / \sigma_{\varpi}$ = 200 \rightarrow severe restriction in volume

(most of OB+BHs expected with P = 100-300d)

Basic selection criterion for Gaia DR3 astrometric solution:

 $/\sigma_{\varpi} > 20000/P_{
m days}$ New predictions using ϖ/σ_{ϖ}

https://gea.esac.esa.int/archive/docu mentation/GDR3/pdf/GaiaDR3_docu mentation_1.1.pdf

- 0.14% of simulated OB+BHs detected (0-1 OB+BH)
- 0.3% of simulated OB+OB binaries detected (~20 OB+OB)

 \rightarrow In line with ~ 10 ALS II sources having astrometric binary solution...

- Non-detection of OB+BHs → no information on BH-formation scenario
- Need much less conservative constraint on the actual Gaia data in future data releases to learn about
 - BH-formation physics
 - the formation of BH+BH mergers

With Gaia we can find ~ 200 OB+BH systems AND learn about BH-formation scenarios

constraints are less conservative in future data

releases

AUTHEBUOKHOUS

For more info: see Janssens et al. (2022, subm.)

Gaia. ESA

Simulated astrometric signals

Parallax precisions of the ALS II sources

Unknown BH-formation physics

• Eccentricity distributions \rightarrow information about kicks

Unknown BH-formation physics

• Period distribution \rightarrow information about kicks

Different kick mechanism (stronger kicks)

Different explosion mechanism

Unknown BH-formation physics

- Eccentricity distribution \rightarrow information about kicks
- $\bullet \quad \mbox{Period distribution} \rightarrow \mbox{information about kicks}$
- Mass of the black hole \rightarrow information on collapse

Janssens et al. (2022)

The Astrometric Mass-Ratio Function

= AMRF (Shahaf et al. 2019)

Theoretical

$$\mathcal{A} = \frac{q}{(1+q)^{2/3}} \left(1 - \frac{S(1+q)}{q(1+S)} \right)$$

q = photometric mass ratio = least luminous / most luminous S = Intensity ratio (mass dependent)

 predict the maximum photocentre motion for dif kinds of systems

The Astrometric Mass-Ratio Function

= AMRF (Shahaf et al. 2019)

Theoretical

$$\mathcal{A} = \frac{q}{(1+q)^{2/3}} \left(1 - \frac{S(1+q)}{q(1+S)} \right)$$

q = photometric mass ratio = least luminous / most luminous S = Intensity ratio (**mass dependent**)

 predict the maximum photocentre motion for diffe kinds of systems Janssens et al. (2022)

