

Photometric Determination of Main-Sequence Binaries (with Gaia)

Alex Wallace (with Andrew Casey)

Overall Goals

- Use Gaia photometry to constrain astrophysical parameters of a star
- Determine whether it is hosting an unresolved companion
- If there is a companion, calculate the mass ratio
- Calculate binary fractions

Astrophysical Parameters on the H-R Diagram

Mass

Astrophysical Parameters on the H-R Diagram

[Fe/H]

Astrophysical Parameters on the H-R Diagram

Age

Binaries

• What about mass ratio?

• We receive light contribution from both stars

• We receive light contribution from both stars

• We receive light contribution from both stars

• We receive light contribution from both stars

Binaries on the H-R Diagram

- Low-Medium q: Redder and brighter
- Equal binary: \sim 0.75 mag brighter than single star

Our Simulations

Magnitudes

Want to get from here

to here

Simulation-based Inference (SBI)

Maximize probability $P(\theta | x)$

Sample many times to produce posterior distribution

Injection and Recovery

- Simulate sets of θ to produce x
- Run SBI on x to recover heta
- Compare median θ with simulations

- Example posterior distributions of 5 parameters
- Simulated values marked in red

How did we do overall?

Comparison histograms between true values and medians

Binary Fraction

• What qualifies as a binary?

What we consider a single star

What we consider a binary

Both simulated with q=0

Where does our method fail?

100,000 stars simulated with q=0

(all single stars)

Where does our method fail?

High mass or low mass/high [Fe/H] can be mistaken for binaries

Results with real data

Spectroscopic survey of stars in the Milky Way to trace the history of the galaxy

Results with real data

 \sim 700,000 sources from GALAH survey

Binary Fraction of GALAH Sample

Clear binary 'region'

What if we already know something about the star?

Open cluster M67

- Well studied
- Many Sun-like stars

H-R Diagram of M67, using Gaia parallax and magnitudes

Forced metallicity distribution

We can constrain [Fe/H] based on previous studies of M67

Effect on distributions

Effect on distributions

Masses are now

better constrained

New [Fe/H] Distribution

M67 H-R Diagram

Limitations & ongoing work

- Currently constrained to the main sequence
- We don't consider possible stellar interaction (ongoing work)
- We are not considering systems of more than 2 stars
- Only the beginning: planning to combine with RV and astrometry to produce a single tool for identifying companions

Thank You

