

## Accurate M/R of Hyades White Dwarfs (through Gravitational Redshift)

Luca Pasquini , A.F. Pala, M. Salaris, I. Leao, H. Ludwig, A. Weiss, J.R. de Medeiros



## Why accurate WD M/R?

WDs are the most common stellar renmant (Gentile Fusillo, yesterday)

Knowledge of WDs physical parameters

- Stellar evolution
- Age of disk and halo

Initial to Final Mass Ratio (IFMR) is a key ingredient for chemical evolution (integrated mass losses of low and intermediate mass stars) (see P. Marigo yesterday)

As physicists we must measure as accurately as possible ...

#### +ES+ 0 +

The velocity shift in the spectrum of a star can be expressed as : DV = RV + GR + Vres

- RV = radial velocity
- GR=gravitational Redshift
- Vres= convective motions and other effects, negligible in WDs, DV measured in the NLTE core of Balmer lines
- DV measurements may be extremely precise (for exoplanet search below 1ms<sup>-1</sup>) but we need them to be accurate
- GR can be measured if other terms are known.
- GR ~ 0.636\*M/R -0.003 (Km/s)



Can be measured in a few cases (Dravins et al. 1999) with 3 methods:

- Change of parallax
- Perspective acceleration (16 stars)
- Changing angular extent (Moving-Cluster method)
  - Hypothesis: all stars move through space with common velocity vector
  - RV is the projection of velocity vector on the line of sight



From Dravins et al. 1999

## **Astrometric and Spectroscopic RV**

#### To which extent do spectroscopic and astrometric radial velocities agree ??

> What is the accuracy of RV measurement ?



Qualitative agreement Possible dependence

(Dravins et al. 1999)

5



#### The Hyades (Leao et al. 2019)

#### Hyades best cluster to be studied

- > Nearby, extended
  - Most accurate astrometric RV
- Small systematic bias (<70 m/sec) by neglecting expansion or asymmetries</p>
- HARPS observations of 131 stars, precise spectroscopic RV (<2 ms<sup>-1</sup>)
  - > All computed using the same (G2) mask
  - I observation/star on average: Spectroscopic RV precision ultimately determined by jitter induced by activity (~30-40 ms<sup>-1</sup>) (Paulson et al. 2004)
    - Activity Jitter should produce extra noise, no bias



#### **RV Results** (Leao et al. 2019)

# RV<sub>spec</sub> - RV<sub>astro</sub> Corrected for (GR, Convective shift, cluster rotation) : -16 ms<sup>-1</sup> (median) – 33 ms<sup>-1</sup> (mean)



#### $\sigma$ = 347 ms<sup>-1</sup> Dominated by cluster internal dispersion

Internal cluster dispersion estimated in ~320 ms<sup>-1</sup> from proper motions (Perryman et al. 1998, Lindegren et al. 2000, Reino et al. 2018)

7 🗾 🚺 🍉 🕂 🗰 💵 🚍 💵 💷 💷 💷 💶 🛨 💥 🖺



## **Gravitational Redshift**

Given that RV<sub>astro</sub> is the same as RV, for the Hyades WDs we can use:

**GR** = DV -  $RV_{astro}$ 

RV<sub>astro</sub> is computed using stars coordinates and GAIA parallaxes and Hyades cluster parameters (Reino et al. 2018, GAIA Collaboration 2018)

V<sub>res</sub> is negligible for WDs (no convective shifts)

**GR** provides a clean measurement of M/R

## M/R Hyades WDs (Pasquini et al 2019)

- Pasquini et al. 2019 applied the method to existing VLT-UVES and Keck-HIRES results, finding a systematic difference: *M/R from GR was* systematically smaller than from models.
- Further conclusions were hampered by the quality of Observations (~2 Km/s) because
  - Both UVES and HIRES are slit instruments
  - > Observations were taken for other purposes
  - Both instruments suffer of wavelength distortions (e.g. Withmore & Murphy 2015)
  - Moderate Resolving power (R~20000)



#### **ESPRESSO** measuremnts

- ESPRESSO at VLT is the last generation HR sectrograph, with superior precision and accuracy (Pepe et al. 2022)
- 8 bona fide HYADES WD were observed, with sufficient S/N to get a DV error measurement comparabe to cluster dispersion (~320 m/s)
- Hα fitting NLTE core (quadratic `+double gaussian lines for sky residuals and NLTE line core)
  - New Gravitational Redshifts are larger than previous ones





#### Gravitational Redhsift in Hyades WDs

Measurements accuracy in line with expectations

Stellar parameters retrieved fitting Gaia magnitudes and colours with Bergeron et al. models (Salaris et al. 2009 IFMR)

| name   | $T_{\text{eff}}$ | $\sigma T_{\rm eff}$ | Log(g) | $\sigma Log(g)$ | R       | Mass  | Mbol   | MG     | Age  | M/R   | a   | $M/R_{GR}$ |
|--------|------------------|----------------------|--------|-----------------|---------|-------|--------|--------|------|-------|-----|------------|
| HZ4    | 14241            | 170                  | 8.27   | 0.01            | 0.01078 | 0.781 | 10.701 | 11.829 | 877  | 72.45 | 1.5 | 73.68      |
| EGGR29 | 15085            | 280                  | 8.36   | 0.020           | 0.01011 | 0.836 | 10.584 | 11.860 | 744  | 82.69 | 2.6 | 88,45      |
| LAWD18 | 18851            | 309                  | 8,10   | 0.019           | 0.01226 | 0,681 | 9.202  | 11.050 | 1023 | 55,55 | 1.6 | 56,87      |
| LAWD19 | 23450            | 406                  | 8.09   | 0.021           | 0.01238 | 0.688 | 8.241  | 10.635 | 911  | 55,57 | 1.8 | 55,15      |
| HZ7    | 20430            | 400                  | 8,08   | 0.021           | 0.01245 | 0.672 | 8.811  | 10.867 | 1044 | 53,98 | 1.7 | 55.77      |
| HZ14   | 26753            | 550                  | 8.11   | 0.027           | 0.01231 | 0,703 | 7.678  | 10.387 | 800  | 57.11 | 2.3 | 54.52      |
| HG7-85 | 14280            | 174                  | 8.34   | 0.014           | 0.01023 | 0.825 | 10.799 | 11.932 | 816  | 80.65 | 1.7 | 81.23      |
| GD52   | 13627            | 184                  | 8.37   | 0.013           | 0.01000 | 0.842 | 11.049 | 12.051 | 868  | 84.20 | 1.7 | 84.27      |

- The two methods are completely independent
- M/R globally Agree to better than 1% (except EGGR29)

## **A consistent Picture**

- Large spread in age. But IFMR and age are degenerate
- Salaris&Bedin(2018) assume Gaia Hyades age from TO (790Myr) and derive an adhoc IFMR for Hyades
- By using S&B IFMR: all stars in age range between 725 and 800 Myr, also in the M/R plane. (cfr. Brandner) and same mass as S&B
- EGGR29 exception, possibly a merger



#### +E\$+ 0 +

## **Spectroscopic analysis** (Cummings et al. 2018)

T<sub>eff</sub> and Log(g) derived by fitting Balmer lines

- Spectroscopic T<sub>eff</sub> are systematically higher than photometric, R up to 15% smaller (and M larger)
- **Known disagreement** (e.g Beregron et al. 2018)...
  - Experimental and theoretical studies not conclusive

| Star   | Our   | Gianninas | Claver | Koester | Limoges |  |
|--------|-------|-----------|--------|---------|---------|--|
| HZ14   | 26753 | 27540     | 27390  |         | 26820   |  |
| Lawd19 | 23450 | 25130     | 24420  | 24000   | 24200   |  |
| HZ7    | 20430 | 21890     | 21340  | 21374   | 20810   |  |
| Lawd18 | 18851 | 20010     | 19570  | 19616   | 19140   |  |
| HZ4    | 14241 | 14670     | 14770  | 14440   |         |  |
| EGGR29 | 15085 | 15810     | 15180  | 16049   |         |  |
| HG7-85 | 14280 | 14620     |        | 14623   |         |  |
| GD52   | 13627 | 14820     |        |         |         |  |

Comparison of our photomteric Teffs with spectroscopic ones from literature



## **New: M/R Comparison**

#### Spectroscopic M/R do not agree well with M/R from GR observations

Percent difference between M/R measured with GR with the same quantity derived from models:

Our photometric estimates, open squares

Spectroscopic (Cummings et al. 2018), red circles

Photometry (different zero point) (Gentile Fusillo 2021) , green triangles



14



#### **Other clusters?**

#### Praesepe published data show a rather poor agreement ... (UVES, Casewell et al. 2009)



Same as previous figure for the Paesepe Cluster;

M/R derived from Casewell et al. GR measurements

Spectroscopic estimates from Cummings et al. 2018 (Red circles)

Photometric estimates from Salaris & Bedin 2019 (Blue circles)



#### Conclusions

- We measured Velocities and GR for the Hyades WDs to about 1% accuracy
- M/R derived from theoretical (photometric) models and those measured with GR agree to better than 1%.
- A consistent picture is reached using ad-hoc isochrones (with modified IFRM): Hyades WDs ages are constrained between 725 and 800 Myr and masses agree to better than 1% with S&B(2018)
- One star (EGGR29) stands out and is possibly the product of a merger
- Confirm disagreement between photometric and spectroscopic analysis
  - Add a new powerful comparison: Spectroscopic M/R do not match well observations for the Hyades WDs
- Only other cluster (Praesepe) with GR published data show serious discrepancies with models' M/R values