

MULTI-wavelength studies of BLACK hole and nonpulsating NEUTRON star X-ray binaries

Sara E. Motta (INAF - Osservatorio Astronomico di Brera)

May 10th, 2022

AUDITION INAF RSN4

X-RAY BINARIES ACCRETION AND OUTFLOWS

Fender & Belloni 2012

WHY STUDYING X-RAY BINARIES

- Nearby laboratories of extreme physics - dense matter, strong gravity, superenergetic particle acceleration
- Accretion and ejection follow the same principles at all masses - binaries are smallscale AGN
- Binaries evolve very fast real time astrophysics

THE PROJECT - MULTIBLACKNEUTRONS

A multi-wavelength and multi-tecnique approach to the study of black hole and non-pulsating neutron star X-ray binaries

Long-standing collaboration, systematic from ~2015, involving 20 researchers and 7 institutes (5 INAF, 2 Universities).

MULTIBLACKNEUTRONS is "scheda madre" to P-REX (PI: Capitanio)

THE TEAM - members

14 INAF members

12 staff, 2 post-docs (1.3 FTE/year)

6 associates

5 staff, 1 post-doc (0.3 FTE/year)

International collaborators

UK, Spain, France, The Netherlands, Australia, US

INAF O.A. Brera

Sara E. Motta, Tomaso Belloni

INAF IASF Palermo

Antonino D'Aì, Melania Del Santo, Ciro Pinto, Fabio Pintore, Alberto Segreto, Elena Ambrosi, Alessio Marino, Thomas Russell

INAF O.A. ROMA

Piergiorgio Casella, Luigi Stella

INAF O.A. Cagliari

Massimo Cocchi

INAF IAPS Roma

Fiamma Capitanio, Giovanni Piano

Uni. Cagliari

Luciano Burderi, Alessandro Riggio, Andrea Sanna

Uni. Palermo

Tiziana Di Salvo, Rosario Iaria

THE TEAM

Timing analysis

Spectral-timing

Broad band Spectral analysis

Modelling

Fine spectroscopy

Time-resolved spectroscopy

Polarization

EYES ON THE X-RAY SKY

- Accretion spectroscopy and fast time-variability
- Outflows fine spectroscopy and timeresolved spectroscopy

IXPE

Swift

THE IMAGING X-RAY POLARIMETRY EXPLORER

OBJECTIVES

SCHEDA FIGLIA P-REX, P.I. Fiamma Capitanio

- ASI/NASA mission (launched in December 2021)
- X-ray polarimetry at 2-8 keV
- Provides a combination of imaging, spectral and temporal capabilities
- 3 X-ray telescopes with identical mirrors and polarization-sensitive imaging detectors at their focus.

- Constrain the geometry of Comptonization regions and jets in accreting LMXBs
- Constrain the spin of BHs and NSs
- 1.5 Ms of observations supported by large multi-band observing programs

EVN

Noto (IT)

EYES ON THE RADIO SKY

The physics of relativistic jets

MeerKAT

e-MERLIN

AMI-LA

LBA

VLA

Radio

X-ray

X-ray

Radio

Radio

Radio

Optical

Optical Optical

Optical

NIR

X-ray/x-rays

https://www.media.inaf.it/2019/02/21/i-tre-giorni-dello-scorpione/

MEDIA INAF

Observing time - Three days of multi-band observations of Sco X-1

	Observatory	Approved Time	Proposal code	P.I.	Aim	Notes
1-3	VLBA, EVN and LBA	72-hr over three days	GM074	S.E. Motta	High angular resolution and sen- sitivity continuous monitoring at 8.4 GHz.	Core Observation
4	Chandra	120ks over three day	20400701	S.E. Motta	X-ray timing and fine spec- troscopy.	Core Observation
5	Nicer	As much as possible over 3 days	Legacy program	S.E. Motta and J. Homan	Very high resolution X-ray tim- ing.	Core Observation
6	INTEGRAL	80 ks	1620027	S.E. Motta	Hard X-rays uninterrupted mon- itoring.	Support Observation.
7	VLA	8-hr	VLA/19A-302	S.E. Motta	High time-resolution radio observation at 5 and 8.4 GHz.	Support Observation.
8	OVRO	Best effort basis	NA	S.E. Motta	High-frequency radio monitor-	Support Observation.
9	MeerKAT	1 hr	NA	R. Fender	High-sensitivity radio bserva- tions at 1.3 GHz	Support Observation.
10	ESO VLT	6-hr over 3 nights	0102.D-0418	F. Vincentelli	High time-resolution OIR pho- tometry with Hawk-I.	Support Observation.
11	NOT	3 half-nights		J.J.E. Kajava	High-precision photomety in V- band with ALFOSC.	Support Observation.
12	SALT	Best effort basis		D. Buckely	Spectroscopy	Support Observation.
13	Liverpool Telescope	7.5-hr over 3 nights	PL19A15	S.E. Motta	Fast optical photometry in I+z band.	Support Observation.
14	XMM-Newton	90ks	DDT request	S.E. Motta	Fast X-ray and fast optical pho- tometry with UVM2 filter	Support Observation.
15	TNG	3 hr	A38DDT4	S.E. Motta	High-resolution spectroscopy with HARPS-N	Support Observation.

EUROPEAN r∳idt**N ∀ t**spectros **F**\$ ISTITUTO NAZIONALE DI ASTROFISICA NRF NATIONAL INSTITUTE CSIRO SARAO NETWORK CHANDRA onal Research Foundation South African Radio AV. ESCOPIC esa integral .IMI NAZIONALE xmm-newton European Space Agency GALILEO NRAO

Observing time - The Accretion-Ejection physics in X-ray binaries

	binari
	X-ray
	d NS
ento	iH an
ziam	s in B
rinan	hysic
estal	iion p
richie	-Eject
From	cretion-
	Aco
	ANA:
	BAN
	ACE-

cility	Source	Time	Year	Ы	Observation details
MM-Newton	GRS 1915+105 (BH)	45ks* 11.5ks	2021 2021	Motta	DDT request, ObsID 0871191401 Proposal 086496, Obs ID 0864960101
	V4641 Sgr (BH)	180ks*	2021	Motta	DDT request, ObsID 0891802001
vift	Bright BH Transient	75 ks*	2022	Del Santo	Approved via Swift guaranteed time
	GRS 1915+105 GRS 1915+105	30 ks* 30 ks	2021 2022	Motta	Approved via Swift guaranteed time
	MAXI J1810-222	23 ks*	2021	Russell	ToO request (source ID 00011105)
	Swift J1729.5-3223	5 ks*	2021	Russell	ToO request (source ID 00014435)
	4U 1820-30	30 ks	2022	Russell	Approved via Swift guaranteed time
TEGRAL	Bright BH Transient	600 ks (pre-approved)	2022	Del Santo	Proposal 1940027 (awarded via INTEGRAL-TAC)
	GRS 1915+105	45ks	2021	Motta	Proposal 086496 (awarded via XMM-TAC)
	V4641 Sgr	380ks*	2021	Motta	DDT, Obs ID 18700080001
CER	4U 1820-30	90 ks	2022	Marino	Proposal 5104 (awarded via NICER TAC)
ISTAR	4U 1820-30	60 ks	2022	Marino	Proposal 5104 (awarded via NICER-NuSTAR TAC)
eerKAT	GRS 1915+105	4 hr (16 pointings)*	2021	Motta	Guaranteed time via ThunderKAT collaboration
lerlin	GRS 1915+105	12hr x 2*	2021	Motta	DDT request, DD12003, DD10008
/N	GRS 1915+105	8hr x 2*	2021	Motta	Proposal E20A012, EM144b,c
CA	New X-ray transient New X-ray transient New X-ray transient	1hr x 3 1hr x 3 1hr x 3	2021 2021 2022	Russell	C2601 (2021APR cycle) (awarded via ATCA-TAC) C2601 (2021OCT cycle) (awarded via ATCA-TAC) C2601 (2022APR cycle) (awarded via ATCA-TAC)
	GX 339-4 MAXI J1803-298 Swift J1729.5-3223 BH Transient	28hr (7 pointings)* 79hr (18 pointings)* 14hr (3 pointings)* 4hr x 10	2021 2021 2021 2022	Russell	C3057 (awarded via ATCA-TAC)
	MAXI J1810-222	40hr (11 pointings)*	2021	Russell	CX445 (awarded via DDT)
	V4641 Sgr	4hr (1 pointing)*	2021	Russell	C1199 (awarded via DDT)
	Swift J1818.0-1607	8hr (1 pointing)*	2021	Russell	CX496 (awarded via DDT)
	4U 1820-30	90hr	2022	Russell	C3456 (awarded via ATCA-TAC)
BA	GX 339-4 BHT	30hr (3 pointings)* 6hr x 4	2021 2022	Russell	V456 (awarded via ATNF LBA-TAC)

Observations obtained in 2021-2022

 ~1600ks in X-rays (XMM, Swift, NICER, INTEGRAL, NuSTAR)

• 356 hours in radio (MeerKAT, eMERLIN, EVN, ATCA)

Observing time - More multi-band observations (since 2018)

- Swift: follow up of BH and NS observed with MeerKAT via SwiftKAT program, ~700ks (since 2019) PI: Motta
- XMM-Newton, approved ToO observations of NGC 3621, 120ks (2020) PI: Motta
- NuSTAR, GRS 1915+105, 45ks (2019) PI: Motta
- MeerKAT, GRS 1915+105, 12 hr (45 pointings, via ThunderKAT 2020) PI: Motta
- VLBA, GRS 1915+105, 8hr (2019) PI: Motta
- EVN, GRS 1915+105, 8hr (2020) PI: Motta
- ATCA, black hole transient, 3 hrs; IGR J17091-3624, 11 hrs; 4u 1543-47, 5 hrs; Swift J1818.0–1607, 12 hr, (between 2018 and 2022) - PI. Russell
- VLA, 4U 1820-30, 6hrs (2018) PI: Russell
- Swift/XRT: faint X-ray transients in the Galactic Center, 80 ks + 54ks (2019 and 2020) PI: Marino
- Astrosat: Swift J1658.2-4242 e GRS 1915+105: 47ks (2018, 2019) PI: Belloni
- INTEGRAL: MAXI J1348-630, MAXI J1820+070: 780 ks (2018, 2019) PI: Belloni
- XMM-Newton: black hole transient ToO, 220ks + 220ks (2018, 2021) PI: Casella
- HAWK-I: black hole transient ToO, 20hr (2019) PI: Casella
- REM: Observations of LMXBs, tens of hr since 2008, 76 hr/yr since 2017 PI: Casella
- > 2000ks of X-rays observations (Swift, XMM, NuSTAR, Astrosat, INTEGRAL)
- 70hr of observations in radio (MeerKAT, VLBA, EVN, ATCA, VLA)
- Hundreds or hours in IR (REM and HAWK-I)

International collaborations

- ThunderKAT
- SKA/MeerKAT+
- EVN

Radio

X-rays

%-rays

- ngEHT
- SOXS
 - eXTP
 - IXPE
 - Athena
 - Theseus
 - Strobe-X
 - Swift/XRT team
- AGILE
 - ASTRI
- CTA

- Motta, Russell

- Motta
- Motta
- Motta, Casella
- Belloni, Del Santo, Motta, Stella, Casella,
 Pinto, Marino, D'Aì, Sanna, Di Salvo,
 Burderi, Iaria
 - Capitanio, Cocchi
 - Pinto, D'Aì, Del Santo, Motta, Marino,
 Di Salvo, Burderi, Iaria
 - Casella, Del Santo, Motta, Marino, Pinto, Pintore, D'Aì, Ambrosi, Di Salvo, Burderi, Iaria
 - Motta, Pintore
- m D'Aì, Ambrosi
 - Piano
 - Pintore, D'Aì, Del Santo, Piano, Segreto
 - D'Aì, Del Santo, Piano, Pintore, Segreto

Team network and collaborations

Since 2015 147 refereed papers +1 (35 in 2021-2022) 980 citations h-index 26

A few highlights coming...

V404 CYG: CLUMPY OUTFLOW FROM EDDINGTON ACCRETION

WHEN THE GRS 1915+105 ENTERED THE OBSCURED PHASE

Motta et al. 2021a

After 26yr of extreme activity

- First transitioned to a ~canonical hard state
- Then entered a prolonged obscured phase

The variable radio jets are fed by variable accretion happening behind a complex layer of absorbing material.

RADIO AND X-RAY OBSERVATIONS OF SCO X-1: ULTRA RELATIVISTIC FLOWS

QPOs are the **only** proxy of launch of the invisible URFs

Motivated the richiesta finanziamento EJECTA

RELATIVISTIC PRECESSION

Constraining black hole (and neutron star) masses and spins via X-ray QPOs

A spin distribution consistent with that from GWs is emerging

Bhargava et al. 2021

Motta et al. submitted

MAXI J1820+070

MODELLING THE JET EMISSION OF BLACK HOLE AND NEUTRON STAR XRBS

- ISHEM (Malzac 2013) cannot reproduce the soft γ-ray tail from GRS 1716-249 unless p < 2
- Challenges the shock acceleration theory
- Non-thermal Comptonisation origin most likely

The "standard scenario" of conical geometry and X-rays PDS does not work for 4U 0614.

- Either parabolic jet + X-rays PDS input
- ➡ Or conical jet + flicker-noise PDS input

CRITICALITIES

Lack of funding and man-power

• Currently no dedicated funding:

Past funding via project **Sco X0** (PI Belloni, audition 2021), **now expired** (ASI/INAF 2017 - 101 k€, ASI/ INAF 2019 - 159 k€, INAF-Mainstream - 40 k€)

• Very limited man-power, especially radio astronomers:

Lack of man-power to handle regular stream of data, especially radio

No funding to form next generation of scientists to prepare for SKA, EHT, Athena, eXTP, etc.

• Post-doc:

Russell - formerly ASI INAF, now Finanziamento Regione Sicilia (until November 2022)

- Ambrosi Swift fondi missione (until April 2023)
- Marino associato, currently abroad

Funding requests

A way out

EJECTA: Extreme JEts from CompacT Accretors	Mini grant	PI: Motta
ACE-BANANA: ACcretion-Ejection physics in Black hole And Neutron star X-rAy biNAries	GO/GTO grant	PI: Del Santo
3D-FAST: A 3D approach to fast variability in black-hole binaries scheda <i>GHATS</i> ,	Large grant	PI: Belloni
XB jet variable polarised emission ————————————————————————————————————	Theory grant	PI: Casella
Development of an automated pipeline for REM data reduction	Mini grant	Pl: Testa, Co-l Casella
BLOSSOM: BLack hOleS Swift fOrMation	Large grant	Pl: Pinto
P-rex: Polarized X-rays from LMXB	Large GO grant	Pl: Capitanio

EJECTA ACA-BANANA	Directly and uniquely related to <i>MULTIBLACKNEUTRONS</i> Travel funding and post-doc (radio astronomer)
3D-FAST	Funding for post-doc (multi-wavelength)
INAF Astrophysics Fellowship	 Post-docs candidates could be joining the team

SUMMARY AND CONCLUSIONS

Important role in the national and international panorama

- Large amount of multi-band data and high publication rate
- Broad involvement in international collaborations
- Vast expertise in relevant areas

We lack man-power and funding to support the team

- We often surrender leadership to other institutes
- We require especially radio-astronomers experienced in galactic transients

A RADIO LOOK AT SCO X-1: THE DISCOVERY OF ULTRA RELATIVISTIC FLOWS

Global VLBI and NICER observations

Some preliminary results

Relative Right Ascension (mas)

- 2 URFs detected already, in the predicted X-ray state
- Core jet switching off
- Orientation changing jets

6 hr of data out of 3.5 days