The Compton Spectrometer and Imager COSI

F. Tavecchio INAF-OAB

COSI in a nutshell

A satellite with a Compton Telescope (0.5-2 MeV) selected by NASA for the SMEX program

Launch: September 2025

Duration: 2 years

PI John Tomsick (UC Berkeley)

https://cosi.ssl.berkeley.edu

Institutions involved:

U. C. Berkeley
Naval Research Laboratory
Clemson Univ.
GSFC
ASI (Italy)
INAF (Italy)
IRAP (France)
Tokio and Nagoya Univ.

Why the MeV band?

— The MeV band: a bridge between the thermal and non-thermal Universe

- Nuclear processes only accessible in this band (lines). Positron annihilation
- The output of several compact sources peaks in this band (e.g. GRB, blazars)

MeV astrophysics: a synoptic view

An illustrative example

The e[±] galactic annihilation line

Discovered in the '70, origin of e⁺ still a puzzle The strongest persistent gamma-ray line in the sky Strong excess from the GC but spatial distribution poorly known A tool to study low-energy CR propagation in the Galaxy

SPI spectrum (Siegert et al. 2019)

Type of source	Source and references
Nucleosynthesis products	²⁶ Al from stellar winds [Diehl et al., 2006;
	Limongi and Chieffi, 2018; Siegert, 2017]
	²⁶ Al & ⁴⁴ Ti from CCSNe [Diehl et al., 2006;
	lyudin et al., 1994]
	⁵⁶ Co from Type Ia SNe [<i>Clayton</i> , 1973;
	Leventhal et al., 1978; Milne and Leising,
	1999]
	¹³ N, ¹⁸ F, ²² Na from Novae [<i>Leising & Clayton</i>
	1987; Hernanz et al. 1999]
Individual sources	Low-mass X-ray binaries [Weidenspointner et
	al., 2008]
	Hypernovae/GRBs [Cassé et al., 2004]
	Pulsar winds [Wang, 2006]
	Microquasars [Guessoum et al., 2006]
	Stellar flares [Bisnovatyi-Kogan and
	Pozanenko, 2017]
	Neutron star mergers [Fuller et al., 2019]
	Sgr A* [Cheng et al., 2006; Totani, 2006] but
	also see [Panther et al., 2018]
Dark matter (DM)	Annihilating MeV dark matter [Boehm et al.,
	2004; Ema et al., 2020]
	Excitations of heavy DM [Finkbeiner and
	Weiner, 2007; Pospelov and Ritz, 2007]
	Primordial black holes [Laha, 2019]

Compact objects and transients

Peak of the prompt around 1 MeV Clues for prompt emíssíon mechanísms, Jet structure...

GRB-GW connection ...

Gamma ray bursts

Peak of the high-energy bump around I Mev

Clues for emission mechanisms, jet composition (hadronic/leptonic)...

Powerful blazars, radiogalaxies

Compton Telescopes

- The detector records two successive scatterings
- An "event circle" is determined
- The intersection of several circles provides the detection

Comptel onboard CGRO

The Compton Spectrometer and Imager (COSI)

Balloon-borne Compton telescope

Evolution of Nuclear Compton Telescope

Solid-state (Ge) detectors (12 — 8x8x1.5 cm)

Ballon flights in 2014 and 2016

COSI 2016 campaign 46 days (May 16-July 2)

COSI flight path

2016 flight: results

The 511 kev annihilation line

COSI - SMEX

Selected by NASA for the SMEX program

Launch: September 2025 (no later than October 15, 2025 with 1 month/year reserve).

Duration: 26 months (1 month checkout + 2 year science mission + 1 month decommissioning).

PI John Tomsick (UC Berkeley)

https://cosi.ssl.berkeley.edu

Institutions involved:
U. C. Berkeley
Naval Research Laboratory
Clemson Univ.
GSFC
ASI (Italy)
INAF (Italy)
IRAP (France)
Tokio and Nagoya Univ.

COSI has a unique combination of excellent energy resolution and large field of view

- COSI uses germanium detectors for excellent energy resolution
 - ΔE/E more than an order of magnitude better than the previous Compton telescope (COMPTEL on CGRO)

- COSI constantly points away from Earth and alternates between North and South to cover the whole sky in 24 hours
 - COSI's instantaneous FOV is:
 - >4x larger than COMPTEL
 - >12x larger than INTEGRAL/SPI

South

Parameter	Requirements
Energy range	0.5-2 MeV for emission lines 0.2-1 MeV for polarization 0.4-0.5 MeV ortho-positronium continuum 0.5-5 MeV for positron continuum (e+ injection energy)
Field of view	25% sky (instantaneous) 100% sky (daily) for transient surveys and all-Galaxy coverage
Energy resolution	0.8% FWHM @ 1.157 MeV for 44Ti emission lines
Angular resolution	2.0° FWHM @ 1.809 MeV for ²⁶ Al imaging
Localizations	<1.0° for GRBs

COSI science goals

1. Uncover the origin of Galactic positrons

2. Reveal the dynamics of element formation

3. Gain insight into extreme environments with polarization

4. Probe the physics of multimessenger events

INAF team

4 INAF researchers (with HW, SW and scientific expertise) are <u>members of the COSI Team</u>:

Andrea Bulgarelli: MM, data pipeline, real-time analysis Giancarlo Ghirlanda: MM, GRB, transients Valentina Fioretti: simulations, data pipeline Fabrizio Tavecchio: polarization, AGNs, MM.

The definition of the working groups is ongoing

Scientific Working Groups	FT: Co-lead of extragalactic and DM SWGs
Developer team	VF and AB: leads of two sub-WPs

Extended INAF team:

In total 20 INAF researchers (building on the experience gained with AGILE, eASTROGAM) are involved for a total of 0.8 FTE/yr (2022-2024)

INAF contribution

Currently planned:

Pipeline for real-time analysis (leaded by AB): development of a simulation tools for transients (GRB, SGR, AGN)

Instrument simulations (leaded by VF): detector performances

Contribution to data challenge(s) (GG, FT): input models for GRB, AGNs, polarization

Critical issues

No dedicated funds still allocated.

Discussion with ASI on possible fundings of the activities are ongoing

1-2 dedicated postDocs (science, SW)?

Expected (minimal) x 6 years

- 1AdR x 6 years
- Collaboration meetings
- National workshop

= 300 keuros

Thank you for your attention!

Backup

Anticipated COSI measurements

Emission line science

Additional wide-field mapping:

- Ortho-positronium
- Galactic continuum (related to positrons and cosmic rays)
- All-sky survey

Transient source science

- **GRB** localizations
- □ GRB polarization
- Coverage of HE neutrino events
- ❑ Black hole transients

Extended portfolio:

- Type la supernovae
- Flaring blazars

Persistent source polarization science

Daíly sky exposure

Grasp

Expectations for transients

About 20 short GRBs in 2 years At least 40 GRB 10 with F>10⁻⁶ cgs

Spectroscopy

Continuum

Polarization

Expectations

About 40 GRBs with MDP < 50% About 10 with MDP < 5-10%

To be refined by using state-of-the-art population models...

Polarization

Polarization

