Evolved stars and their dust production

Flavia Dell'Agli

& the STARDUST collaboration:

Francesca Annibali, Roberta Carini , Marco Castellani, Sergio Cristallo, Gabriele Cescutti, Paolo Ventura

Low-intermediate mass stars during their final phases (asymptotic giant branch, AGB):

Gas reprocessed by the internal nucleosynthesis

Dust production in their circumstellar envelope

Flavia Dell'Agli & the STARDUST collaboration - Audizioni RSN2 – May 16th , 2022

Last decade:

Early '10s

Modelling dust production from low-intermediate mass stars during the asymptotic giant branch (AGB) phase (e.g. Ventura et al. 2012a, b, Nanni et al. 2013a, b....)

2012-today

ATON code @OAR: Yields of dust for a wide range of masses and metallicities (Ventura et al. 2014, 2018, 2020, Di Criscienzo et al. 2013, Dell'Agli et al. 2014, 2017, 2019)

2014-today

Dust production rate and dust budget in the Magellanic Clouds (Schneider et al. 2014; Dell'Agli et al. 2015a, b; Marini et al. 2019a, b, 2020, 2021) and in the Local Group dwarf galaxies (Dell'Agli et al. 2016, 2018, 2019)

Ongoing

PostAGBs: characterization and mass-loss history (Tosi et al. in prep.)

PAHs: network for their computation (Carini et al. in prep.)

Flavia Dell'Agli & the STARDUST collaboration - Audizioni RSN2 – May 16th , 2022

The VULCAN code

- VULCAN follows the propagation of shocks in the circumstellar envelopes of AGB stars. Hydrodynamic equations are solved explicitly in a lagrangian scheme.
- The chemical network implemented contains **114 species and 474 reactions**. It is similar to the network used in Gobrecht et al. (2016).
- Radiative Transfer is implemented with the Implicit Integral method, which avoid convergence problems at large optical depths.
- We aim at coupling this hydro code with the *FUNS* stellar evolutionary code.

MDPI

Article

AGB Stars and Their Circumstellar Envelopes: An Operative Approach to Computing Their Atmospheres

Lucio Crivellari ^{1,2,*}, Sergio Cristallo ^{3,4} and Luciano Piersanti ^{3,4}

Article

AGB Stars and Their Circumstellar Envelopes. I. the VULCAN Code

Sergio Cristallo ^{1,2,*}⁽⁰⁾, Luciano Piersanti ^{1,2}⁽⁰⁾, David Gobrecht ³⁽⁰⁾, Lucio Crivellari ^{4,5} and Ambra Nanni ⁶⁽⁰⁾

Gobrecht+ 2017

Gobrecht+ 2022

Dust nucleation

- Sub-nanometer sized objects like clusters of molecules and dust grains regulate the rate at which the star looses its material.
- The idea is to use chemical reactions for clusters of molecules up to the maximum size allowed by computer power, time, feasibility, followed by a solid-state treatment.
- <u>A bottom-up approach</u>, starting with prevalent molecules in the gas phase (e.g. SiC, SiO) and successive growth to clusters by molecular (addition) reactions, seems to be suitable.
- We intend to confine the cluster size, at which the transition from a quantum cluster to periodically ordered crystal occurs.

Flavia Dell'Agli & the STARDUST collaboration - Audizioni RSN2 – May 16^{th} , 2022

APES: Advanced phases of evolving stars - P.I.: Luciano Piersanti Magnetic induced mixing

Magrini+ 2021

GIANTS: Gruppi Italiani di Astrofisica Nucleare Teorica e Sperimentale – P.I. Oscar Straniero

- Objectives: Understanding the synthesis of the elements requires a precise knowledge of the <u>nuclear cross sections</u> at the physical conditions experienced in stellar interiors and in the early Universe.
- 4 international collaborations: LUNA 400 kV + LUNA MV (INFN-LNGS); ERNA (Uni Vanvitelli-CIRCE lab); n_TOF (CERN); PANDORA (INFN-LNS).
- Last year most relevant results:
 - Measure of the ¹³C(a,n)¹⁶O reaction rate, the most important neutron source for the s process in AGB stars (Ciani et al, 2021, PhysRevLett. 127.152701);
 - In the more general framework of a CNO cycle review, a detailed study of the lowenergy resonances of the ¹⁷O(p,g)¹⁸F reaction (Pantaleo et al. 2021, PhysRevC 104.025802);
 - Destruction of the cosmic γ -ray emitter 26Al in massive stars: Study of the key ²⁶Al(n,p) reaction (Lederer-Woods 2021 PhysRevC 104.L022803)

STARDUST future perspectives:

Close binary stars and their dust production (Dell'Agli et al. 2021 FIS funds applied)

Shocks: inclusion in the treatment of the mass-loss and dust production

JWST Cycle 1: interpretation of the Sextans A evolved stellar population (Boyer P.I.)

Flavia Dell'Agli & the STARDUST collaboration - Audizioni RSN2 – May 16^{th} , 2022

Leadership

International reference point for the AGB evolution and dust production in their circumstellar envelope

> 70 publications

3 international conferences organized; > 5 invited and review talks on the topic

Critical areas

Funds to sustain the activities

Thank you!

Flavia Dell'Agli & the STARDUST collaboration - Audizioni RSN2 – May 16th , 2022