Dwarf Galaxies in the context of galaxy evolution

Francesca Annibali (INAF-OAS) on behalf of the *DwarfGalaxies* team

Audizioni RSN2, May 16th 2022

Why are dwarf galaxies interesting?

Most numerous type of galaxies in the Universe and, according to \land CDM, the first to form \rightarrow building blocks of larger structures

Primary candidate sources for cosmic reionization

Irrs and BCDs (low metallicity + gas + SF) in the local Universe are the closest analogues to primeval galaxies in the early Universe

> Best systems to study feedback from massive stars /supernovae and development of galactic winds

Some questions we want to address:

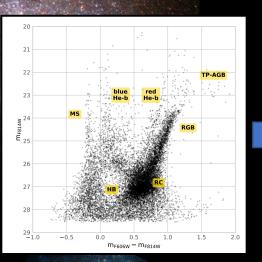
Provide an observational test of the hierarchical merging paradigm at the dwarf galaxy scales

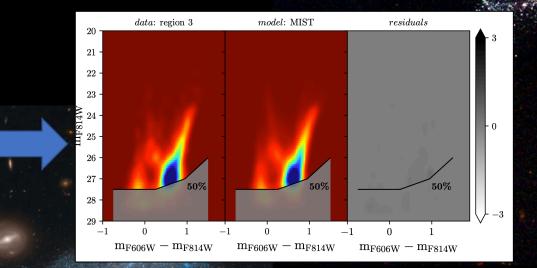
Role of interaction/merging events in the evolution of dwarf galaxies

Interplay between gas content, star formation and stellar feedback

and many others....

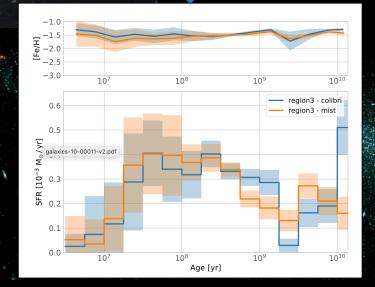
Our approach:

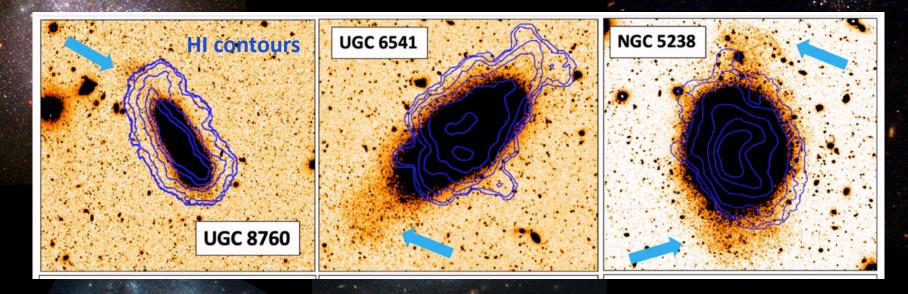

Multi – wavelength datasets and theoretical modelling of nearby gas-rich dwarfs


Stellar Populations and Star Formation Histories (SFHs) from resolved-star color-magnitude diagram (CMDs) modelling

The interstellar medium and its gas phases (ionized, atomic, molecular), metallicity, and dust

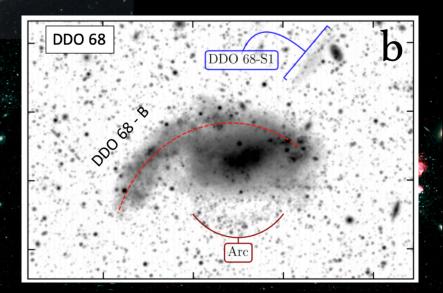
Hydrodynamical N-body simulations, galaxy dynamics, chemical evolution models


Stellar Populations and Star Formation Histories (SFHs) from resolved-star color-magnitude diagram (CMDs) modelling

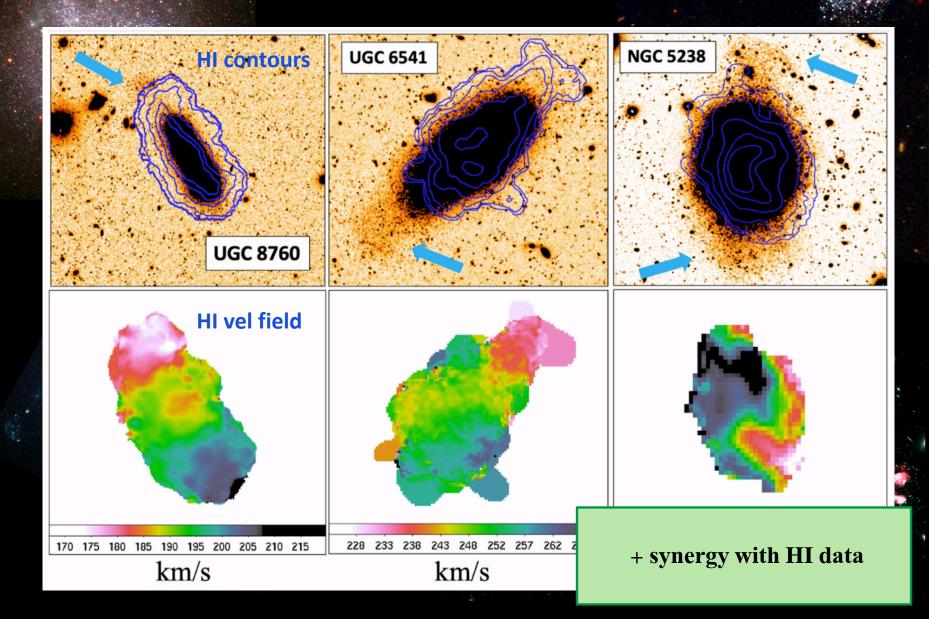


Ancient star formation in UGC 4483; Sacchi et al. 2021, ApJ 911, 62S

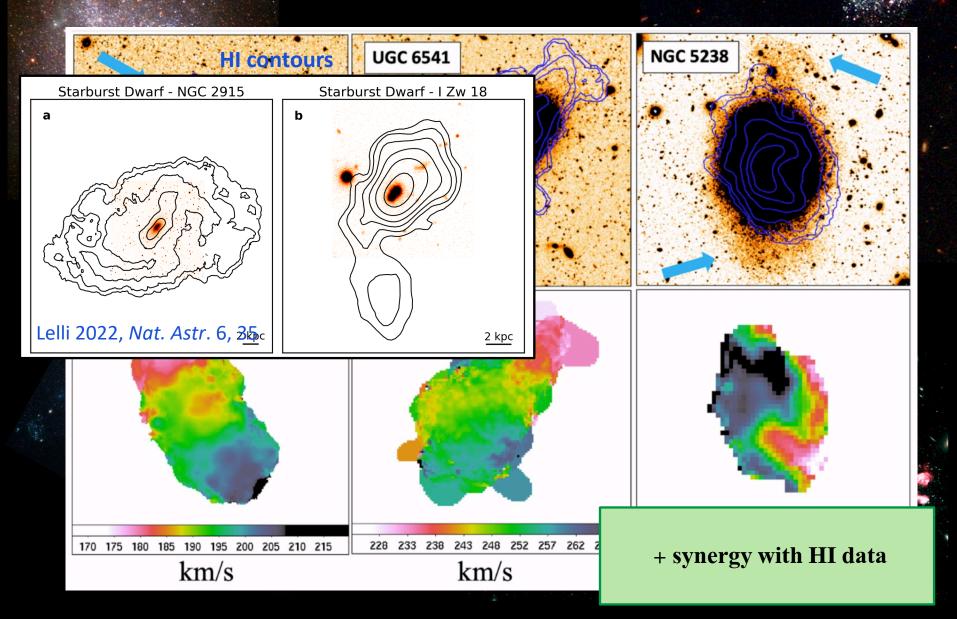
For a review: Tolstoy, Hill & Tosi 2009, ARAA 47, 371 Annibali & Tosi 2022, *Nat. Astr.* 6, 48



Low surface brightness stellar features can trace accretion/merging events



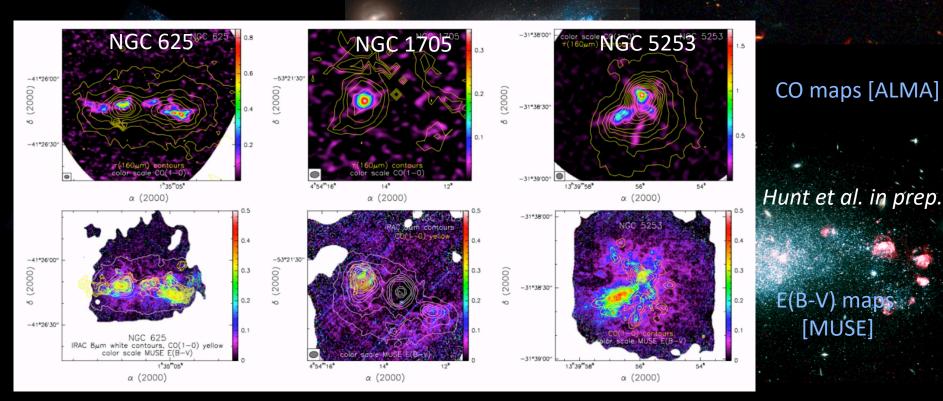
The smallest scale of hierarchy survey (SSH)" LBT strategic program (PI Annibali) Papers: Annibali et al, 2020; Annibali et al. 2022; Pascale et al. 2022


- Deep, wide field LBC imaging of 45 nearby (D<10 Mpc) dwarfs
- Complementary HST data [CMDs]
- Complementary HI data from public surveys
- [VLA, WSRT, GMRT]

Low surface brightness stellar features can trace accretion/merging events

Low surface brightness stellar features can trace accretion/merging events

Multi-phase gas content of dwarf galaxies and its link with SF

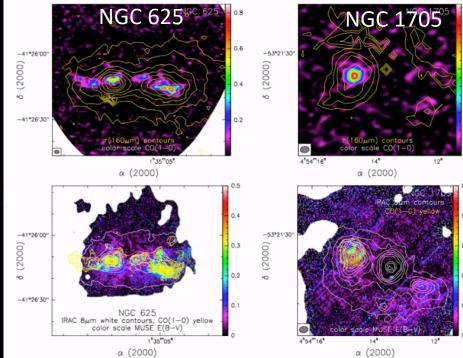

SF closely related to the properties of cold (atomic and molecular) gas; ionized gas is crucial to probe both feedback from SF and ISM metallicity

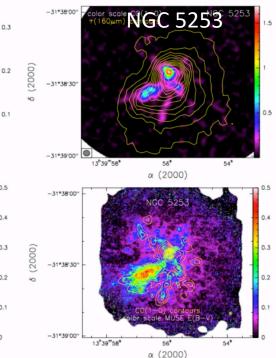
Large datasets of CO, HI, HII with ALMA, IRAM, ATCA, VLA, VLT[MUSE];

Complementary HST, Spitzer and Herschel data

See review by Henkel, Hunt & Izotov 2022, Salaxies, 10, 11

CO maps [ALMA]


Multi-phase gas content of dwarf galaxies and its link with SF


SF closely related to the properties of cold (atomic and molecular) gas; ionized gas is crucial to probe both feedback from SF and ISM metallicity

Large datasets of CO, HI, HII with ALMA, IRAM, ATCA, VLA, VLT[MUSE];

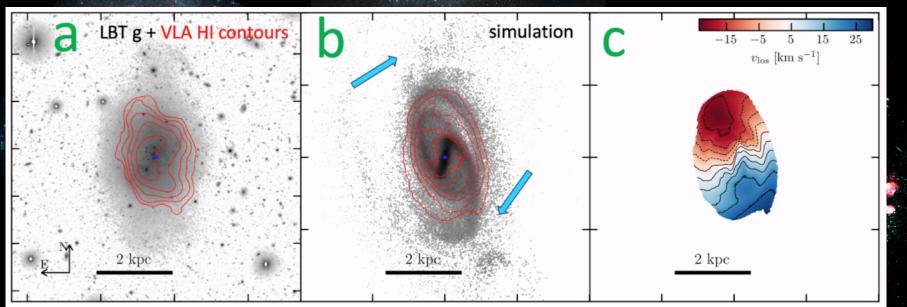
Complementary HST, Spitzer and Herschel data

Interplay between SF, gas content and stellar feedback

CO maps [ALMA]

Hunt et al. in prep.

E(B-V) maps [MUSE]


N-body and hydrodynamical simulations, chemical ev. modelling

N-body + hydro-dynamical simulations (AREPO, Springel 2010) of merging dwarfs

Inclusion of radiative cooling, SF and feedback ightarrow comparison with SF and ISM

Chemical evolution models (e.g. Romano et al. 2019)

NGC 5238, Pascale et al. in prep see also Pascale et al. 2022, MNRAS, 509, 2940; Pascale et al. 2021, MNRAS, 501, 2091

Future perspectives

JWST: new window on studies of stellar population and ISM in dwarf galaxies [approved medium program to study SFH, star clusters and ISM in a few dwarfs]

<u>EUCLID</u> and Roman: full coverage of most external galaxy regions

<u>ELT:</u> study the central galaxy regions with unprecedented resolution -

SKA (and precursors, ASKAP, MeerKAT) higher sensitivity and resolution for HI studies

Stellar Populations [Stellar photometry, SFHs]

Francesca Annibali (INAF-OAS) Michele Bellazzini (INAF-OAS) Michele Cignoni (Uni. Pisa) Felice Cusano (INAF-OAS) Marcella Marconi (INAF-OAC) Ilaria Musella (INAF-OAC) Diego Paris (INAF-OAR) Vincenzo Ripepi (INAF-OAC) Elena Sacchi (AIP, Potsdam) Monica Tosi (INAF-OAS)

INAF FTE = 1.2/yr non-INAF FTE = 0.2/yr

Team

Interstellar medium [HI, HII, CO properties]

Francesco Belfiore (INAF-OAS) Stefano Carniani (SNS Pisa) Edvige Corbelli (INAF-OAA) Giovanni Cresci (INAF-OAA) Leslie Hunt (INAF-OAA) Federico Lelli (INAF-OAA) Laura Magrini (INAF-OAA) Filippoi Mannucci (INAF-OAA) Antonino Marasco (INAF-OAPd) Alessandro Marconi (OAA) Crescenzo Tortora (INAF-OAC) Giacomo Venturi (Uni.Catolica)

INAF FTE = 1.2/yr non-INAF FTE = 0.2/yr

Theoretical modelling [Cosmological, N-body, hydro-dyn. simulations, chemical evol. models]

Francesco Calura (INAF-OAS) Gabriella de Lucia (INAF-OATs) Federico Marinacci (Uni.Bo) Carlo Nipoti (Uni.Bo) Raffaele Pascale (INAF-OAS) Donatella Romano (INAF-OAS) Raffaella Schneider (Uni.Sapienza)

INAF FTE = 0.2/yr non-INAF FTE = 0.4/yr

Leadership

Recognized **international excellence** in dwarf galaxy studies [Annibali & Tosi 2022, *Nat. Astr.* 6, 48, celli 2022, *Nat. Astr.* 6, 35; Battaglia & Nipoti 2022, *Nat. Astr.* in press; Henkel, Hunt & Izotov 2022, *Galaxies*, 10, 11]

- Large Strategic Program at the LBT (SSH 45 h, PI Annibali)
- Several programs with IRAM (total 140 h, PI Hunt)
- PI-ship of programs with LBT, HST, VLT, ALMA, ATCA (Pis Annibali, Belfiore, Bellazzini, Cresci, Hunt, Lelli)

Leading roles for future facilities with important INAF involvement:

- Hunt, lead of Local Universe Working Group in EUCLID
- Annibali, co-lead for stellar photometry working package (EUCLID MWRSP WG) and co-lead for synthetic color predictions of dwarfs (EUCLID LU-WG)
- Annibali, project scientist for MAORY@ELT
- Marconi, principal investigator for ANDES@ELT

Funding

No funds available for the next three years (2022/23/24)

Past funding:

INAF Mainstream Program (1.05.01.86.28) SSH: The smallest scale of Hierarchy Survey", 33 k euro

Over the years, PRIN-SKA "ESKAPE-HI" and PRIN MIUR "Chemical evolution of the MW and of Local Group galaxies" helped promoting this research

To Maintain and consolidate INAF leadership in dwarf galaxy science:

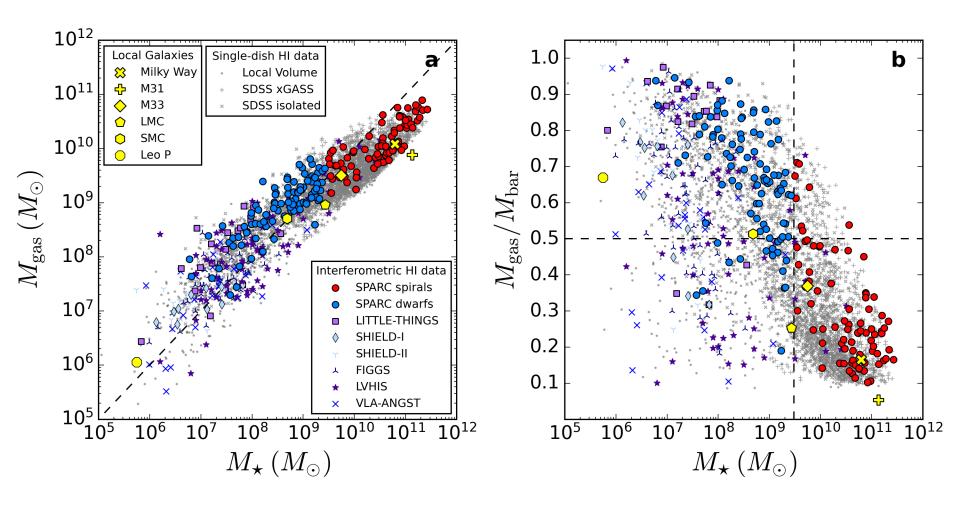
Large proprietary data volume in hand requires a contract for data reduction and analysis of radio/submm data and MUSE cubes

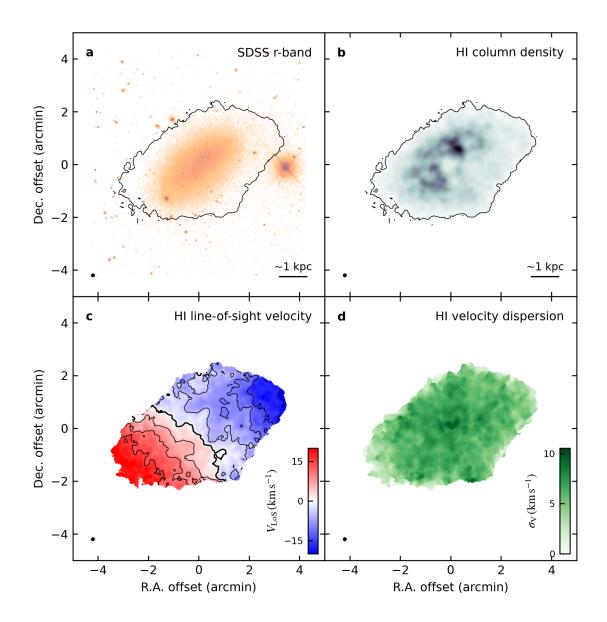
A contract needed to pursue N-body and hydrodynamical simulations of dwarf galaxies in the context of hierarchical galaxy assembling [post-doc contract just terminated]

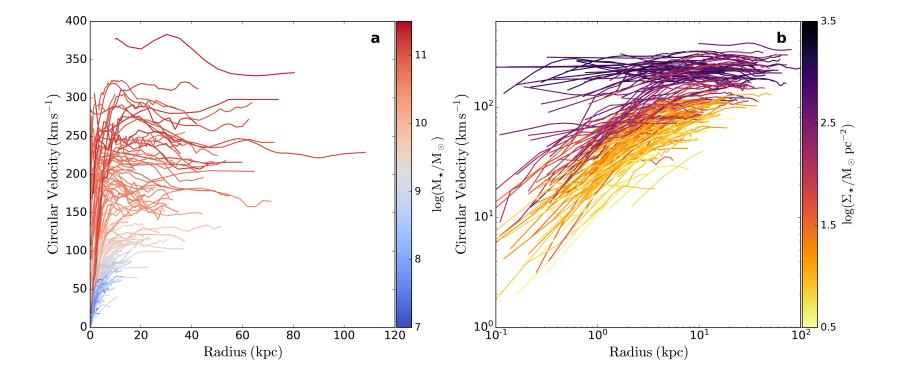
Criticalities

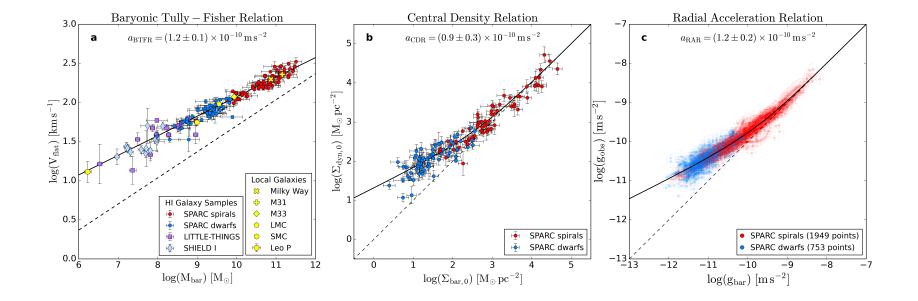
To Maintain and consolidate INAF leadership in dwarf galaxy science:

Large proprietary data volume in hand requires a contract for data reduction and analysis of radio/submm data and MUSE cubes


A contract needed to pursue N-body and hydrodynamical simulations of dwarf galaxies in the context of hierarchical galaxy assembling [post-doc contract just terminated]


INAF Large Grant submitted




Timeline and milestones

	1st semester	2nd semester	3rd semester	4th semester
WP1a	SSH/LBT calibrated point-source photometry	Stellar sub-structures identification in SSH	Final star + HI maps of SSH galaxies: identification of candidate merging dwarfs	
WP1b	Re-analysis of HI archival datacubes, provide new HI maps and velocity fields*	HI morphological/ kinematical peculiarities identification in SSH*		
WP2a	In-depth multiwavelength study (CO from ALMA, ionized gas from MUSE, HI from VLA, CMDs from HST) of a sub-sample of three nearby starburst dwarfs.*		Analysis of MUSE data for a large sample of dwarfs (42) as well as HI and CO data for a sub-sample.*	
WP2b			data of dwarfs in SSH. Priority will be ith merger signatures from WP1	
WP3a	Dwarfs' merging histories from N-body hydrodynamical simulations **		Include gas physics, star formation and feedback in the simulations**	
WP3b	Chemical evolution models of dwarf galaxies			

