

Stellar transients in the era of synoptic surveys

Scheda PDSNET (2.2-2.6 FTE/year staff)

- Stefano Benetti (Primo ricercatore OAPd)
- Maria Teresa Botticella (Ricercatrice OACn)
- Enrico Cappellaro (Dirigente di ricerca OAPd)
- Nancy Elias-Rosa (Ricercatrice OAPd)
- Laura Greggio (Prima ricercatrice OAPd)
- Elena Mason (Ricercatrice OATs)
- Lina Tomasella (Ricercatrice OAPd)
- Paolo Ochner (C.T.E.R. UniPd; ass. OAPd)
- Leonardo Tartaglia (td OAPd Aug 2022)
- Maria Letizia Pumo (rtdb UniCt; ass. OACt)
- Vincenzo Petrecca (PhD UniNa; ass. OACn)
- Andrea Reguitti (PhD student Univ. A. Bello; ass. OAPd)
- Irene Salmaso (PhD student UniPd; ass. OAPd)
- Giorgio Valerin (PhD student UniPd; ass. OAPd)
- [Yongzhi Cai (PhD UniPd; currently postdoc at Beijing Univ.)]
- [Achille Fiore (PhD UniPd; currently postdoc at ETC Trento]

Motivations

In past years, the research on stellar transients was focused on classical core-collapse and thermonuclear supernovae, their progenitors, the explosion mechanisms, and their applications as standardizable candles.

The new generation of all-sky surveys shifted our interest to the characterization of <u>new types</u> of stellar transients, expanding the range of the transient luminosity function, because:

- capture SNe, .la and other non-standard thermonuclear explosions.
- II. Their possible link with important topics, such as the formation of compact objects, the sources of gravitational waves, neutrinos and high-energy particles.

I. Models predict types of stellar explosions that are not fully consistent with the observational properties of traditional SN types: (pulsational) pair-instability, fall-back supernovae, electron-

III. We want to study transients hosted in extreme environments (e.g. low metallicity, faint host, interacting galaxies) or unusual progenitors (very high-mass stars; interacting stellar systems)

Main scientific collaborations

- over 40 researchers (INAF-OAPd, Dublin, Stockholm, Aarhus, Turku)
- 75hrs/ semester in ToO with ALFOSC + 6 half-nights with NOTCam plus other supporting facilities (Liverpool Telescope, TNG, Asiago, GTC, WHT....)

https://www.pessto.org/

- over 250 researchers
- about 90-100 nights per year with NTT+EFOSC/SOFI (supporting facilities: VLT, Prompt, LCOGT....)

- Over 250 researchers with theoretical and observational expertise (many from INAF, mainly from the Grawita collaboration)
- Hard-ToO triggers with multiple instruments mounted at VLT (plus ancillary facilities)

Related programmes we are involved: Euclid, VRO/LSST, ThunderKAT, SOXS, NTE, ET...

MUTS/NUTS2 (Nordic optical telescope Unbiased Transient Survey): from 2016 - in progress; *https://nuts.sn.ie/*

<u>PESSTO/ePESSTO/ePESSTO+</u> (extended-Public ESO Spectroscopic Survey for Transient Objects): 2012 - 2023

Section 2 Engrave (Electromagnetic counterparts of gravitational wave sources at the VLT; http://www.engrave-eso.org/)

• Spectroscopic classification of new transients (Asiago Classification Program with the 1.82m Copernico Telescope; *Tomasella+ 2014, AN, 335, 841*)

- Spectroscopic classification of new transients (Asiago Classification Program with the 1.82m Copernico Telescope; *Tomasella+ 2014, AN, 335, 841*)
- Spectro-photometric follow-up of transients from the UV to the mid-IR (extended to X-ray and radio domains for ejecta-CSM interacting SNe)

- Spectroscopic classification of new transients (Asiago Classification Program with the 1.82m) Copernico Telescope; *Tomasella+ 2014, AN, 335, 841*)
- Spectro-photometric follow-up of transients from the UV to the mid-IR (extended to X-ray and radio domains for ejecta-CSM interacting SNe)

Data modelling to infer the parameters of the progenitor and the explosion: energy, ejected mass, mass of radioactive material (e.g., *Pumo+ 2017, MNRAS, 464, 3013*), ejecta tomography, CSM geometry & composition

• Finding quiescent progenitors from archive images of space (HST, Spitzer, WISE) and 8m-class telescopes with adaptive optics. From luminosity & colour/temperature, and the comparison with evolutionary tracks of single or binary massive stars => progenitor mass (see https://sngroup.oapd.inaf.it/progenitors.html)

- Finding quiescent progenitors from archive images of space (HST, Spitzer, WISE) and 8m-class telescopes with adaptive optics. From luminosity & colour/temperature, and the comparison with evolutionary tracks of single or binary massive stars => progenitor mass (see https://sngroup.oapd.inaf.it/progenitors.html)
- Study of pre-SN variability for ejecta-CSM interacting SNe using survey data (ZTF, ATLAS, PanSTARRS, DLT40)
- Environment characterization (nearby stellar population, host galaxy metallicity)

Rates: state of the art and pending issues

- Core-collapse (CC) SN rates in the Local Universe (within 11 Mpc) HAWK-I @ VLT (*Miluzio+ 2013, A&A, 554, 127*)
 - Minimum progenitor mass for core-collapse SNe = $8 M_{\odot}$
 - 60% of CC SNe are missed due to dust extinction or their intrinsic faintness
- Rates of supernovae from massive stars in a sample of galaxies (*Botticella*+ 2017, A&A, 598, 50) and in cosmic volume (Cappellaro+ 2015, A&A, 584, A62) -SUpernova Diversity And Rate Evolution (SUDARE@VST-OmegaCAM)
 - Most stripped-envelope SNe arise from binary progenitor systems
 - The uncertainties on the rates of SNe from massive stars and the SFRs are still too high to constrain the progenitors for each SN subtype

SN rate

- 1. Gap Transients (https://sngroup.oapd.inaf.it/gap.html)
 - I. Major eruptions and isolated outbursts of massive stars
 - ii. Luminous red novae (stellar mergers)

iii.Intermediate-luminosity red transients (electron-capture SNe)

2. SNe interacting with circumstellar medium (SNe IIn, Ibn and Icn) and pre-SN outbursts

- 3. Faint core-collapse and thermonuclear SNe
- 4. Superluminous supernovae (SL SNe)
- 5. Classical core-collapse SNe progenitors

6. [Electromagnetic counterparts of gravitational waves]

Results: the stellar transient zoo

Mon RV	
-22	
-20	
-18	lag)
-16	nde (m
-14	lagnitı
-12	Peak N
-10	
-8	
-6	
3	

Pre-SN outbursts and interacting supernovae

 Pre-SN (eruptive) mass-loss - impostors
 Luminous SNe in H-rich CSM (IIn) or Herich CSM (Ibn)

3. Progenitors are H-rich massive stars(LBVs) or H-poor massive Wolf-Rayet or He stars in binary systems

https://sngroup.oapd.inaf.it/interacting_SNe.html

Fig. from Elias-Rosa+ 2016, MNRAS, 463, 3894

Valerin+ 2022, MNRAS, tmp, 1162 Reguitti+2021, MNRAS, 501, 1059

Faint supernovae

https://sngroup.oapd.inaf.it/faint.html

Faint core-collapse SNe (type II-P)

- 1. One order of mag fainter than classical SNe IIP
- 2. ⁵⁶Ni masses of a few 10^{-3} M_{\odot}
- 3. Low ejecta velocity (= low kinetic energy, ~10⁵⁰ erg)
- CC of RSGs with final progenitor masses of 6-9 M_{\odot}

Valerin+ 2022, MNRAS, tmp, 1162 *Reguitti+2021, MNRAS, 501, 1059*

Faint thermonuclear SNe

- 1. 1-2 orders of mag fainter than SNe Ia; fast-evolving
- 2. ⁵⁶Ni masses of a few 10^{-3} M_{\odot}
- 3. Low ejecta velocity (= low kinetic energy, ~10⁴⁹ erg)
- 4. Ejected masses of $10^{-1} M_{\odot} =>$ inconsistent with a fulldisruption WD scenario - failed deflagration?

Faint supernovae

https://sngroup.oapd.inaf.it/faint.html

<u>Faint core-collapse SNe (type II-P)</u>

- 1. One order of mag fainter than classical SNe IIP
- 2. ⁵⁶Ni masses of a few 10^{-3} M_{\odot}
- 3. Low ejecta velocity (= low kinetic energy, $\sim 10^{50}$ erg)
- CC of RSGs with final progenitor masses of 6-9 M_{\odot}

Tomasella+ 2020, MNRAS, 496, 1132 Tomasella+ 2016, MNRAS, 459, 1018

<u>Observables</u>

- Extremely luminous (exceding 10⁴⁴ erg s⁻¹) and hot
- 2. Long-duration visibility => massive ejecta
- 3. Usually hosted in dwarf metal-poor galaxies
- Early spectra can be H-rich (SLSN-I) or H-poor (SLSN-II) 4.
- 5. Late spectra sometimes show strong O features (this favour high ejected masses)

Super-luminous supernovae

https://sngroup.oapd.inaf.it/slsn.html

<u>Scenarios</u>

• High ⁵⁶Ni masses (a few solar masses) => PI SNe? • Strong ejecta interaction with massive CS shells => PPI? • Magnetar spin-down + ⁵⁶Ni

• A combination of the above powering mechanisms

Fiore+ 2022, MNRAS, 512, 4484; Fiore+ 2021, MNRAS, 502, 2120 Benetti+ 2014, MNRAS,441, 289; Nicholl+ 2013, Nature, 502, 346

High-impact scientific outcomes

- Our publications linked different species of massive stars with SN types
- We discovered the first stripped-envelope SN heralded by a pre-SN outburst; we introduced a new SN Type (lbn), linking these explosions with Wolf-Rayet stars (or massive He stars in binary systems)
- For the first time we followed an erupting LBV that later exploded as a real SN (of Type IIn); we proved that these pre-SN outbursts are common, and found a surprising homogeneity in the SN observables.
- We first found a connection between SLSN explosions and normal core-collapse of stripped-envelope stars; we
 proposed that ejecta-CSM interaction play a major role in the observed properties of SLSNe
- We observed the first reliable pair-instability SN candidate (OGLE-2014-SN073; Terreran+ 2017, Nat. Astr., 1, 713)
- We first proposed that ILRTs are convincing electron-capture SN candidates
- We charaterized luminous red novae as stellar mergers, and found tight correlations among physical parameters, as well as provided tools to infer the progenitor masses
- We performed seminal systematic studies for a few subclasses of rare core-collapse SNe (e.g. faint II-P, 1987A-like)
- ✓ We are providing rate estimates for many classes of stellar transients
- Late 2022: template light curves for VRO/LSST brokering will be released; in late-2023 we will release to the community the first complete and homogeneous database of gap transients

Papers

Some numbers (since 2009)

		Totals
Number of papers	0	382
Normalized paper count	8	33.9

Citations

		Totals
Number of citing papers	8	9148
Total citations	8	20264
Number of self-citations	8	2252
Average citations	•	53.0
Median citations	8	25
Normalized citations	8	1020.2
Refereed citations	8	17606
Average refereed citations	8	46.1
Median refereed citations	8	21
Normalized refereed citations	0	896.1

Leadership

•ePESSTO+

- •NUTS2
- •SOXS
- •Engrave, Grawita
- •Pl of awarded HST
- •Pls of 8-10m class proposals
- •Asiago Telescope
- Large/Long Term
- •ThunderKAT
- Euclid, ET
- •VRO/LSST

	•Botticella, Tartaglia, Ma
	•Elias-Rosa
	•Many of us
	•Cappellaro
time	•Elias-Rosa
Telescope	•Tartaglia, Elias-Rosa, Mason
	•Tomasella, Benetti
proposals	•Salmaso, Valerin, Reguit
	•Elias-Rosa, Botticella
	•Cappellaro
	•Botticella

f-i

Perspectives

- We want to study the death of the most massive stars, connecting the SN explosion (incl. dark SNe) with the stellar properties and evolution
- The connection SN explosion/massive star properties through the rates for all transient types as a function of z, mass, SFR, and metallicity
- We expect to find the missing fraction of transients in dusty environments (from infrared to radio domains)
- The combination VRO/LSST + SOXS will allow us to study in detail a harvest of exotic transients, providing the high-quality dataset requested to constrain the explosion mechanisms
- The growing available archives of space and ground-based high spatial resolution telescopes (as well as the new opportunities with JWST) will provide robust information on the transients' explosion sites, the progenitors and their former eruptive mass-loss history

alt_sched surveyDuration=5 nfilters=3 nPerLC=4 StoN=10

Critical issues

Despite the strong scientific impact of our research and our involvement in many forthcoming projects, we have to deal with:

institutions (Beijing University, Queen's Univ. Belfast and Univ. Andres Bello Santiago).

We applied for an PRIN-INAF Large Grant to study "Gap Transients" in the recent 2022 call, and Elias-Rosa applied to a PRIN-INAF GTO Grant on analysis of HST data.

understructured (by a factor of two) due to contract expirations and retirements.

New recruitments (turn-over, and career progresses) are urgent to maintain our leading position in the research on transient events.

 Currently we have no dedicated funds: the last one was awarded in 2014 (PRIN INAF; 135 kE); plus ~11 kE from PRIN-INAF 2017 (PI: Giroletti). In recent years, our program was also supported by 9 PhD students, four of which recruited (at OAPd) through agreements with international

• Despite our involvement in many projects, in a very short time (~1-2 years), we will be severely

