

Elemental abundances in planet host stars

(and their use as chemical clocks)

KATIA BIAZZO INAF – Astronomical Observatory of Rome on behalf of the GAPS project & of the Ariel sub-WG for (Biazzo et al. 2022) Stellar Parameters (see Laura Magrini's talk)

The Context

Accurate, precise, and <u>homogeneous</u> determination of stellar parameters and elemental abundances of planet host stars is crucial for a comprehensive characterization of planetary systems:

- To derive absolute planetary masses (and radii), which depend on precise determination of exoplanet-hosting stellar masses (and radii)
- □ To derive precise stellar ages
- To measure stellar abundances (e.g., Fe, Mg, Si, C, O, N, S) and correlate them with planetary abundances (e.g., to study the formation/migration/evolution mechanisms)
- To distinguish features from stellar and planetary atmospheres

- Known Planets with transiting planets (e.g. RML, ATMO) → benchmark targets/study (Biazzo et al. 2022)
- Known Planets with long period planets
- Metal-Poor stars
- M-type stars
- Oper Clusters
- Young Objects
- Stars with Neptunian candidates
- □ Other (asteroseismology, SPI, etc.)

The Method Chemical and Kinematic analysis

Approach to measure **precise** chemical properties (MOOG code+ATLAS models+HFS+NLTE):

- Line equivalent widths (T_{eff} , logg, ξ , [Fe/H], [X/H])
- Spectral synthesis (vsini, Li, CNO)

Kiel diagram

- **\Box** 4400 < T_{eff} (K) < 6750
- □ -0.3 < [Fe/H] < +0.4
- Abundance of 26 elements (e.g., C for 26/28, O for 18/28, Mg & Si for all stars)
- □ vsini < 10 km/s
- □ Lithium detected in 7/28 stars

The Method Chemical and Kinematic analysis

- Approach to measure **precise** chemical properties (MOOG code+ATLAS models+HFS+NLTE):
 - □ Line equivalent widths (T_{eff}, logg, ξ, [Fe/H], [X/H])
 - Spectral synthesis (vsini, Li, CNO)
- □ Kinematic procedure:
 - □ Space velocity components: Gaia parallaxes/proper motions and HARPS-N V_{rad}
 - TD/D probabilities (Bensby prescriptions)
 - □ Z_{max}, e_G, R_{peri}, R_{apo}, R_{GC} (galpy package)

Chemical and Kinematic properties

GAPS

- All 5 targets with TD/D>0.5 show
 [Fe/Ti]<0.0
- All older (age>5.5 Gyr) targets show [Fe/Ti]<0.0
- Mean v_{tot}>20 km/s for targets with [Fe/Ti]<0.0</p>

- [Fe/H]<-0.2: slight α–enhancement but different kinematics
- solar [Fe/H]: highest-[α/Fe] value for the star with the lowest-mass planet
- [Fe/H]>0.2: α–enhancement for the most metal-rich stars

→ Kinematically hot stars, older, and α -enhanced → Kinematically cold stars, younger, and less α -enhanced

Abundances as "Chemical clocks"

[X/Fe] versus Age:

GAPS

- α-elements (e.g., Mg) over Fe have positive slopes with ages in agreement with their production over shorter timescale with respect to iron
- s-process elements (e.g., Y, Zr) over Fe have negative slope due to their delayed production from successive captures of neutrons by iron-peak elements in low-mass AGB stars with respect to the early contribution of SNIa/SNII that produce iron
- \Rightarrow abundance ratios of pairs of elements produced over different timescales can be used as "**chemical clocks**" (e.g., Nissen 2015, Casali et al. 2020)

Abundances as "Chemical clocks"

[X/Fe] versus Age:

GAPS

- α-elements (e.g., Mg) over Fe have positive slopes with ages in agreement with their production over shorter timescale with respect to iron
- s-process elements (e.g., Y, Zr) over Fe have negative slope due to their delayed production from successive captures of neutrons by iron-peak elements in low-mass AGB stars with respect to the early contribution of SNIa/SNII that produce iron
- \Rightarrow abundance ratios of pairs of elements produced over different timescales can be used as "**chemical clocks**" (e.g., Nissen 2015, Casali et al. 2020)

Ariel targets: first tests

Comparison with isochronal ages (Yonsei-Yale models; Han et al. 2009)

Tot ≈ 60 stars

Ariel targets: first tests

The importance of Mg, Si, C, O

- ightarrow Mg,Si,C,O play important role in the formation/migration of exo-planets
- \rightarrow Importance of the Galactic chemical evolution

GAPS

→ Mg/Si, C/O, (O-Mg-2Si)/Fe of the lowest-mass planet compatible with olivine-rich mantle and large (iron) core

- \rightarrow Mg,Si,C,O play important role in the formation/migration of exo-planets
- \rightarrow Importance of the Galactic chemical evolution
- → Mg/Si, C/O, (O-Mg-2Si)/Fe of the lowest-mass planet compatible with olivine-rich mantle and large (iron) core

The importance of Mg, Si, C, O

ightarrow Mg,Si,C,O play important role in the formation/migration of exo-planets

 \rightarrow Importance of the Galactic chemical evolution

GAPS

→ Mg/Si, C/O, (O-Mg-2Si)/Fe of the lowest-mass planet compatible with olivine-rich mantle and large (iron) core

GAPS • Stellar abundances vs Planetary masses

Is the most significant correlation ([O/Fe]-M_P) consequence of the planetary formation scenario and/or location in the Galactic disk? Hints of trend between Mg/Si and M_P possibly related to the planetary composition and/or location in the Galactic disk?

Stellar Iron abundances VS Planetary properties

- Tendency for high-eccentricity planets to be around more metal-rich stars
- Denser planets around stars with higher [Fe/H] (and therefore in more eccentric orbits)

Similar analysis will be possible with Ariel

• Tracing the Planet Formation Scenario...

C/N*>C/O*>N/O* heavy elements dominated by the accretion of solids
 N/O*>C/O*>C/N* accretion from the disk gas

Name	C/N_{\star}	C/O_{\star}	N/O*	C/N_p	C/O_p	N/Op	C/N^*	C/O^*	N/O^*
HAT-P-12	$2.09 {\pm} 0.16$	$0.31{\pm}0.18$	$0.15 {\pm} 0.16$	$5.33 {\pm} 0.18$	$0.80 {\pm} 0.15$	$0.15{\pm}0.10$	2.55 ± 0.24	$2.58 {\pm} 0.23$	$1.00 {\pm} 0.19$
WASP-10	$2.00 {\pm} 0.21$	$0.37{\pm}0.18$	$0.19{\pm}0.18$	6.31 ± 0.32	$0.82 {\pm} 0.30$	$0.13 {\pm} 0.10$	$3.16 {\pm} 0.38$	$2.22 {\pm} 0.35$	$0.68 {\pm} 0.21$
HAT-P-26	$3.80{\pm}0.15$	$0.55{\pm}0.12$	$0.14{\pm}0.12$	$1.79 {\pm} 0.16$	$0.25{\pm}0.13$	$0.14{\pm}0.10$	$0.47 {\pm} 0.22$	$0.45{\pm}0.18$	$1.00 {\pm} 0.16$
WASP-39	$3.73{\pm}0.12$	$0.51{\pm}0.12$	$0.14{\pm}0.14$	$1.73 {\pm} 0.16$	$0.26{\pm}0.12$	$0.15{\pm}0.10$	$0.46 {\pm} 0.20$	$0.51{\pm}0.17$	$1.07{\pm}0.17$

See also talks by Diego Turrini, Elenia Pacetti

• Tracing the Planet Formation Scenario...

C/N*>C/O*>N/O* heavy elements dominated by the accretion of solids
 N/O*>C/O*>C/N* accretion from the disk gas

Name	C/N*	C/O_{\star}	N/O*	$\rm C/N_p$	$\rm C/O_p$	N/Op	C/N^*	C/O^*	N/O*
			0.15 ± 0.16						
WASP-10	2.00 ± 0.21	$0.37{\pm}0.18$	0.19 ± 0.18	6.31 ± 0.32	$0.82 {\pm} 0.30$	$0.13 {\pm} 0.10$	3.16 ± 0.38	$2.22 {\pm} 0.35$	0.68 ± 0.21
HAT-P-26	3.80 ± 0.15	$0.55{\pm}0.12$	0.14 ± 0.12	1.79 ± 0.16	$0.25 {\pm} 0.13$	$0.14 {\pm} 0.10$	0.47 ± 0.22	$0.45{\pm}0.18$	1.00 ± 0.16
WASP-39	$3.73 {\pm} 0.12$	$0.51{\pm}0.12$	$0.14 {\pm} 0.14$	$1.73 {\pm} 0.16$	$0.26{\pm}0.12$	$0.15 {\pm} 0.10$	$0.46 {\pm} 0.20$	$0.51{\pm}0.17$	$1.07 {\pm} 0.17$

P/S

S: Biazzo et al. 2022 P: Kawashima & Min 2021

Accretion of solids + N-rich gas between N₂ and CO₂ snowlines (HAT-P-12), Cenriched gas between CO₂-CH4 snowlines (WASP-10)

□ Formation outside the CO₂ snowline and accretion of gas (HAT-P-26 & WASP-39)

Next-coming perspectives for Ariel targets

Stellar Characterization WG

(PI Camilla Danielski)

