

Homogeneous and self-consistent stellar parameters of ARIEL targets: The description of the method and the first sample

Laura Magrini (INAF- Osservatorio Astrofisico di Arcetri) on behalf of the Stellar Characterisation WG

WG STRUCTURE AND MEMBERS

COORDINATOR C. Danielski (IAA)

DATA ANALYSIS and OBSERVATIONS <u>M. Rainer (OA Brera),</u> P. Kabath, N. Sanna, +

ATMOSPHERIC PARAMETERS

<u>L. Magrini/A. Brucalassi (OA Arcetri),</u> K. Biazzo, G. Casali, S. Sousa, M. Tsantaki, +

ACTIVITY INDEXES

<u>S. Benatti (OA Palermo), G. Bruno, G. Micela,</u>

+

Ariel Workshop 25-27 May 2022

CONSORTIUM SYNERGIES D. Turrini, G. Morello, S. Sarkar, B. Edwards

ABUNDANCES <u>E. Delgado-Mena (IA/U. Porto)</u>, V. Adibekyan, M. Van Der Swaelmen

AGE, MASS, RADIUS <u>T. Campante (IA/U. Porto)</u>, D. Bossini, G. Sacco

- observational methodology of Ariel is based on differential spectroscopy to measure planetary signals of 10-50 ppm relative to the star
- importance of precisely characterising all the properties of the host stars
- uniform methodology for the analysis of all Tier 1 stars (Danielski et al. 2021).

GENERAL AIM

SUB-WG WORKFLOW METHODS: model dependent and empirical

DATA ANALYSIS + OBSERVATIONS M. Rainer (OA Brera)

ACTIVITY INDEXES S. Benatti (OA Palermo)

Ariel Workshop 25-27 May 2022

ATMOSPHERIC PARAMETERS L. Magrini/A. Brucalassi (OA Arcetri)

ABUNDANCES E. Delgado-Mena (IA/U. Porto)

AGE, MASS T. Campante (IA/U. Porto)

DELIVERABLES

ATMOSPHERIC PARAMETERS

Tables at CDS for the first 187 targets

ABUNDANCES (Na, Al, Mg, Si, C, N, O)

Ariel Workshop 25-27 May 2022

ACTIVITY INDEXES

ARIEL STELLAR CATALOGUE @ARIEL WEBSITE

AGE, MASS, RADII

Observational campaign

Starting from 2019, we are conducting an observational campaign to collect high resolution (R > 50,000), high S/N (S/N=120 at 600 nm) spectra for all the ARES targets without good enough public data.

The main part of the campaign focuses on echelle spectrograph on 4-8m sized telescopes, and we also have some dedicated time with OES at the Ondrejov observatory on a 2m telescope.

We are also conducting a variability and activity monitoring campaign on a smaller sample of selected targets, using photometry and high resolution spectroscopy with small-size telescopes.

Observational campaign *I. Stellar parameters and abundances*

Instrument	Characteristics	Campaign info		
UVES@VLT	Optical, R≈70,000	3 proposals accepted, 1 submitted		
HARPS-N@TNG	Optical, R=115,000	2 proposals accepted, 1 almost submitted (deadline May 27 th)		
PEPSI@LBT	Optical, R=50,000	1 proposal accepted, 1 submitted		
CARMENES@CAHA	Optical (R=94,600) NIR (R=80,400),	1 Large Program proposal accepted and ongoing		
HDS@Subaru Optical, R≈80,000		Proposal submitted		
OES@Ondrejov Optical, R=50,000		First spectra acquired, observations ongoing		

Observational campaign *II. Stellar variability and activity*

Observatory	Characteristics	Campaign info	
Tartu	Optical mid-res spectroscopy and photometry	Interaction with the Stellar Activity subWG, feasibility study performed	
REM	Photometry	1 proposal accepted	
Asiago	Optical, R ≤ 28,700	1 Large Program proposal accepted, observations ongoing	

THE FIRST SAMPLE

B21	HARPS- Archive	UVES-VLT	HARPS-N TNG	PEPSI LBT	Paper I (Magrini et al 2022)	FGK
					Paper II (Tsantaki et al. in prep)	Fast rotators
123	33	20	7	4	Paper III	M dwarfs

Ariel Workshop 25-27 May 2022

THE FIRST SAMPLE

- Solar-type MS stars
- [Fe/H] peaks at slightly supersolar metallicity
- Typical mass ~ 1 Msun

Run O 3.5 4.0 ${\mathcal G}$ log4.5 5.0 4000 7000 7000 6000 5000 $T_{\rm eff} \; [{ m K}]$ Spectral analysis only Mass determin ation

THE NEW STELLAR MASSES

THE VALIDATION SAMPLE

NGC3532 400 Myr, solar metallicity

THE VALIDATION SAMPLE

NGC6633 690 Myr, solar metallicity

THE VALIDATION SAMPLE

NGC2516 240 Myr, solar metallicity

Ariel Workshop 25-27 May 2022

THE KINEMATIC CHARACTERISATION

The dynamical history of stars, including stellar age and kinematics, impact the distribution and the architecture of planets in our Galaxy

FIRST APPLICATIONS

Planetary systems: NASA exoplanet catalogue

Metallicity dependence: heavy elements accreted by the giant planets around higher metallicity stars translates into higher densities and more compact radii than in lower metallicity environments (e.g. Suárez Mascareño et al. 2021).

Stars: our stellar parameters

Planets around more massive stars tend to be richer in gas, with higher H-He mass fractions, and are larger (Lozovski+21)

FIRST APPLICATIONS

3.0

Planetary systems: NASA exoplanet catalogue

- the average planetary mass increases by about 50% from supersolar to sub-solar metallicities.
- the corresponding growth in radius, however, results in volumes about twice as large
- the giant planets around stars with <u>sub-solar metallicity should be less</u> <u>dense than their counterparts</u> around more metallic stars

Stars: our stellar parameters

THE NEXT STEPS:

- Abundance analysis —> subWG-Abundances, by E.
 Delgado-Mena (Porto), INAF participation
- New observations —> subWG-Observations, by M. Rainer (INAF)
- Spectral analysis of M dwarf and >F and fast rotators stars
 - —> subWG-stellar-parameters
- Stellar ages and masses —> subWG-ages-masses, INAF participation
- Stellar activity—> see the talk of Serena

