X-rays from stars with planets and their relevance for the ARIEL mission

Ignazio Pillitteri (INAF-OAPA)

and

G. Micela, A. Maggio, S. Colombo, S. Benatti (INAF-OAPA), C. Argiroffi, F. Reale (UNIPA)

ARIEL-IT Science Meeting, 25-27 May 2022

The ARIEL scientific outcome

1- 1000 target systems for masses, radii and orbit refinements
2- ~500 atmospheric/chemistry characterization
3- ~50-100 finest chemical and dynamical characterization
Edwards et al. 2019

Planets targets for ARIEL

Planet at ~15 Rsun Period=6.7 days

Total eclipse, picture created by Miloslav Druckmüller (2008)

Know the star know the planet

Current solar activity photos taken from my backyard

Hot planets and Star-Planet interaction (SPI)

Different phenomena affecting both the **planets** and the **stars**

- Planetary inflation and evaporation
- Photochemistry, transition from primary to secondary atmospheres
- Orbit migration, planetary rotation (possibly affecting the planetary magnetic field)
- Angular momentum transfer, stellar spin up, consequences for stellar activity
- □ Interaction between stellar and planetary magnetospheres

(see Cuntz et al. 2000, Vidotto 2019)

Strong dependence on star-planet separation

Planetary Inflation and Evaporation

Stellar Activity

Photochemistry

Tides

Angular momentum transfer

Magnetospheric Interaction Star-Planet Interaction (SPI)

Migration

Spin-Orbit lock

> Primary to Secondary Atmosphere

star-planet separation

Planetary Inflation and Evaporation

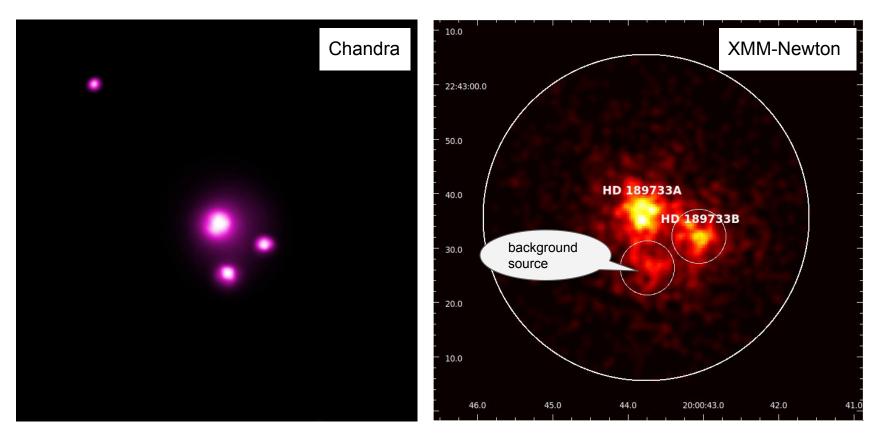
Photochemistry

Stellar Activity

Angular momentum

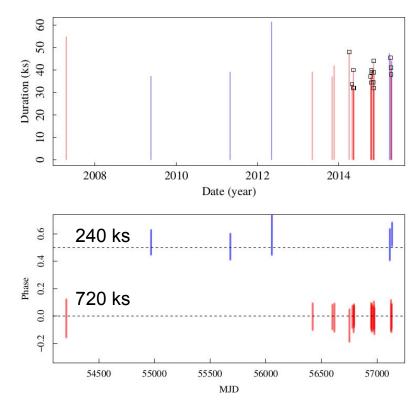
Tides

transfer

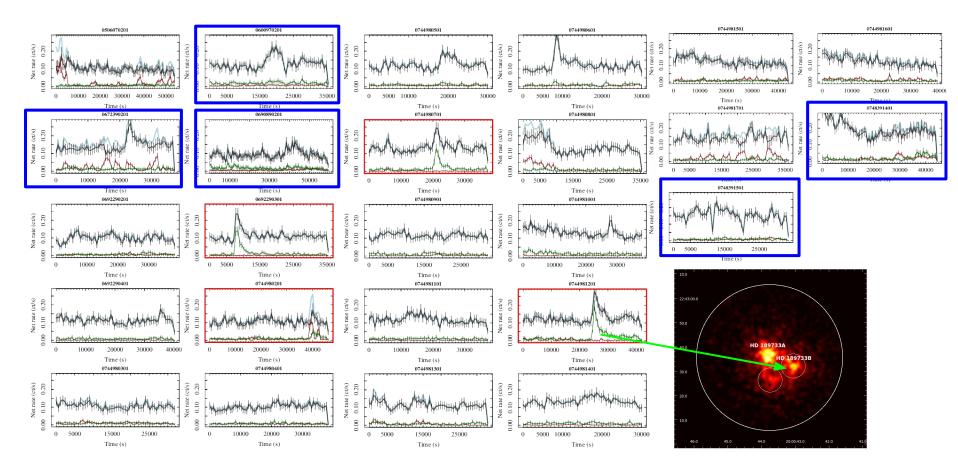

Magnetospheric Interaction X-rays probe
the stellar
activity andMigrationSPI

Primary to Secondary Atmosphere

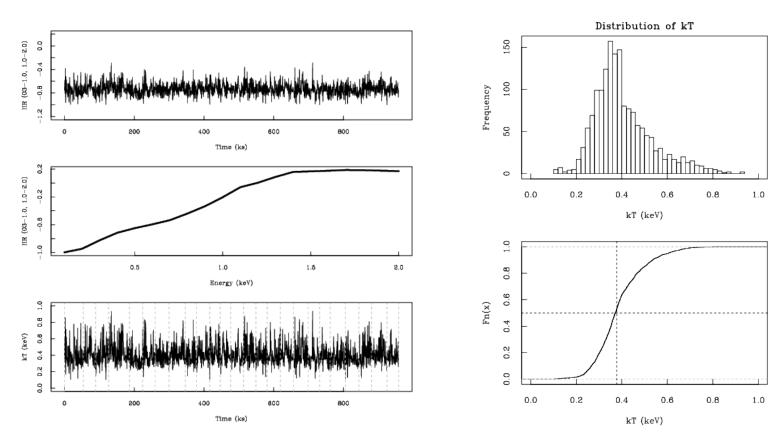
star-planet separation


Stars with planets observed in X-rays

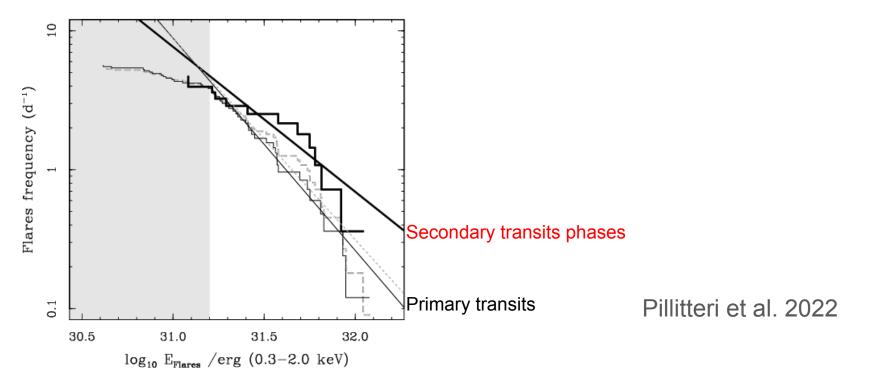
X-rays from HD 189733 (Chandra & XMM-Newton)

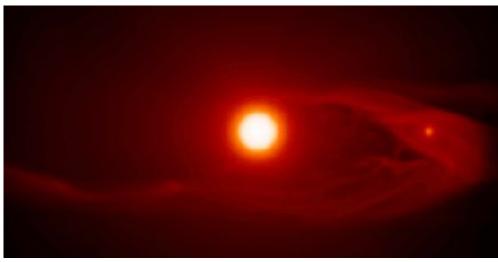

X-rays from HD 189733 (Pillitteri et al. 2022)

	OBSERVATION_ID	RA_NOM	DEC_NOM	START_UTC	DURATION	PI_SURNAME	FILTER
1	506070201	20 00 43.70	+22 42 39.0	2007-04-17 14:06:31.000	54858	Wheatley	Thin1
2	600970201	20 00 43.70	+22 42 39.0	2009-05-18 21:15:54.000	37315	Wolk	Medium
3	672390201	20 00 43.70	+22 42 39.0	2011-04-30 23:14:20.000	39112	Pillitteri	Medium
4	690890201	20 00 43.70	+22 42 39.1	2012-05-07 18:24:32.000	61516	Pillitteri	Medium
5	692290201	20 00 43.70	+22 42 35.8	2013-05-09 20:16:00.000	39218	Wheatley	Thin1
6	692290301	20 00 43.71	+22 42 35.8	2013-11-03 07:54:13.000	37100	Wheatley	Thin1
7	692290401	20 00 43.71	+22 42 35.8	2013-11-21 00:58:40.000	42000	Wheatley	Thin1
8	744980201	20 00 43.71	+22 42 35.3	2014-04-05 05:05:20.000	48000	Wheatley	Thin1
9	744980301	20 00 43.71	+22 42 35.3	2014-05-02 01:22:25.000	33700	Wheatley	Thin1
10	744980401	20 00 43.71	+22 42 35.3	2014-05-13 01:55:22.000	39999	Wheatley	Thin1
11	744980501	20 00 43.71	+22 42 35.3	2014-05-15 09:57:00.000	32000	Wheatley	Thin1
12	744980601	20 00 43.71	+22 42 35.3	2014-05-17 14:21:12.000	32000	Wheatley	Thin1
13	744980801	20 00 43.71	+22 42 35.3	2014-10-17 16:08:26.000	37000	Wheatley	Thin1
14	744980901	20 00 43.71	+22 42 35.3	2014-10-19 20:38:36.000	34400	Wheatley	Thin1
15	744981001	20 00 43.71	+22 42 35.3	2014-10-22 01:39:14.000	39900	Wheatley	Thin1
16	744981101	20 00 43.71	+22 42 35.3	2014-10-24 06:15:47.000	39000	Wheatley	Thin1
17	744981301	20 00 43.71	+22 42 35.3	2014-11-08 20:16:34.000	34600	Wheatley	Thin1
18	744981201	20 00 43.71	+22 42 35.3	2014-11-11 00:37:26.000	44000	Wheatley	Thin1
19	744981401	20 00 43.71	+22 42 35.3	2014-11-13 06:46:05.000	32000	Wheatley	Thin1
20	744980701	20 00 43.71	+22 42 35.3	2014-11-15 09:48:00.000	39000	Wheatley	Thin1
21	744981501	20 00 43.71	+22 42 35.3	2015-04-13 02:37:23.000	45400	Wheatley	Thin1
22	744981601	20 00 43.71	+22 42 35.3	2015-04-17 12:34:55.000	41000	Wheatley	Thin1
23	744981701	20 00 43.71	+22 42 35.3	2015-04-19 19:06:26.000	38000	Wheatley	Thin1
24	748391401	20 00 43.69	+22 42 39.1	2015-04-03 03:30:49.000	47400	SCHARTEL (PS)	Medium
25	748391501	20 00 43.69	+22 42 39.1	2015-04-23 06:17:15.000	44000	SCHARTEL (PS)	Medium
-							

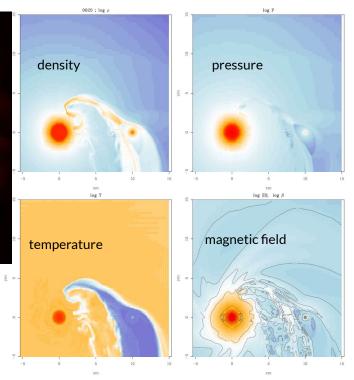


Total: 960 ks ~ 11.2 days


Variability in X-rays of HD 189733

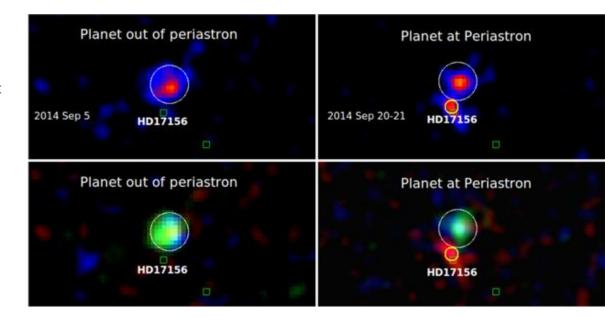

Hardness ratio / Coronal Temperature of HD 189733

Flare energies distribution: primary vs secondary transits



MHD modeling of Star Planet Interaction

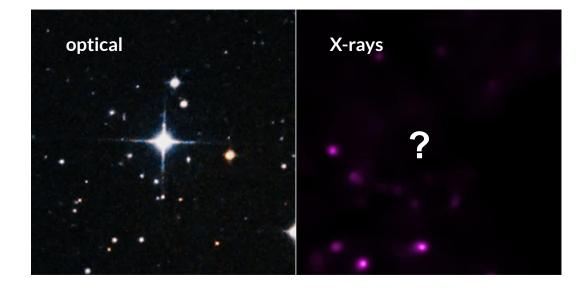
- Dynamics of the plasma star-planet region (Cohen et al. 2011, Matsakos et al. 2015)
- Cometary tails, bow shocks (Lllama&Shkolnik 2016)
- magnetic field shielding
- □ magnetic reconnection and enhanced flare activity (Lanza 2009).
- Search for observables in XUV, radio (and possibly IR) bands


MHD modeling of star+planet at INAF-OAPA, S. Colombo 2022 in prep.

SPI and eccentric orbits: HD 17156

HD 17156: hot Jupiter in an eccentric orbit. Period ~ 21 days X-ray flare (and chromospheric activity) just

after the periastron (Maggio et al. 2015)

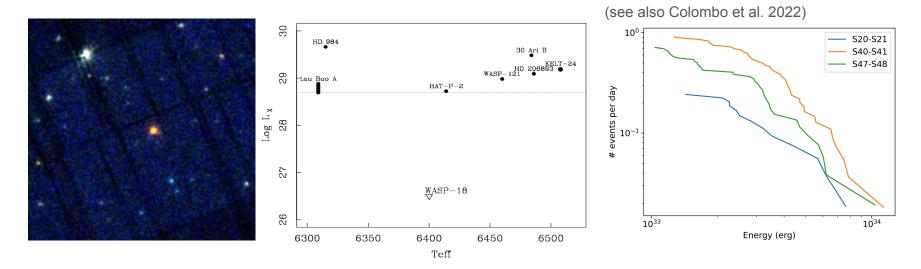


WASP-18 and F stars with hot Jupiters

WASP-18: No X-rays and other variability. Hot Jupiter of 10 Mj, <1 day orbital period.

Disruption of coronal structure or magnetic dynamo due to tidal interaction?

(Pillitteri et al. 2014)


WASP-18 and F stars with hot Jupiters

Kelt-24: F star, 700 Myr, 5 Mj planet in 5.6 days orbit (Pillitteri et al. 2022 in prep.)

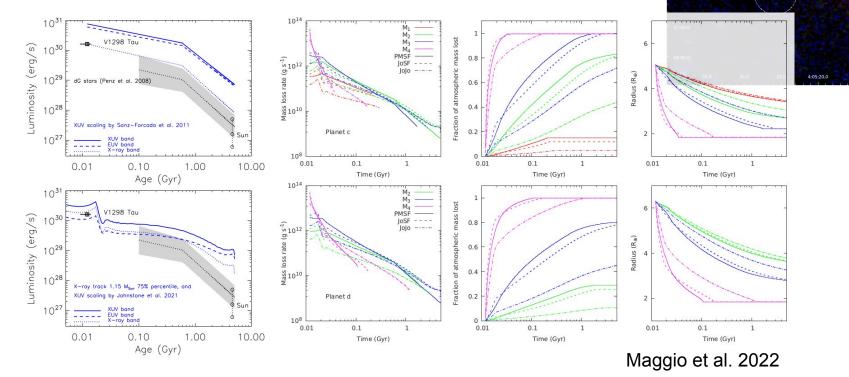
XMM image

X-ray luminosity of F stars with hot Jupiters

TESS optical flares of KELT-24

Young Planets

Star activity is at its maximum during the first phases of planetary formation and evolution


A few very young planets discovered so far: V1298 Tau b,c,d,e; DS Tuc Ab

X-rays are a crucial ingredient for the chemical and dynamical transformation of primary atmospheres

Flares/CMEs effects on young planets.

V1298 Tau

~20 Myr, 4 young planets, XUV flux to infer the rate of evaporation

12:00.0

11:00.0

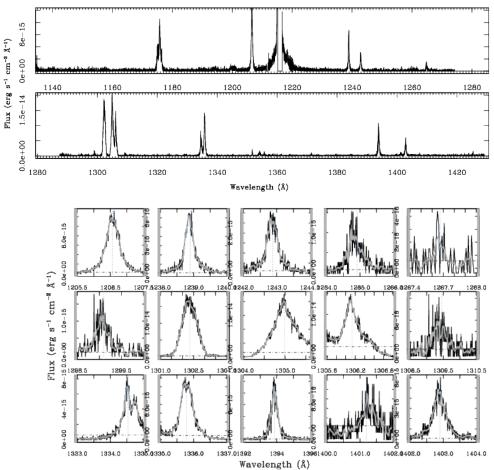
20:10:00.0

09:00.0

08:00.0

V1298 Tau

HD284154

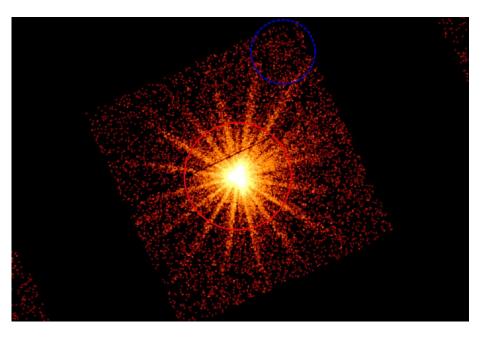

background

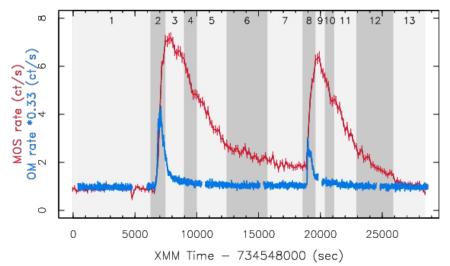
V1298 Tau II

XMM + HST/COS simultaneous observation Reconstruction of the E.M. over 10⁴-10⁷ K X+UV spectrum (bracketing the heavily absorbed EUV portion: ~100-912 Ang.) Maggio et al. 2022 in preparation

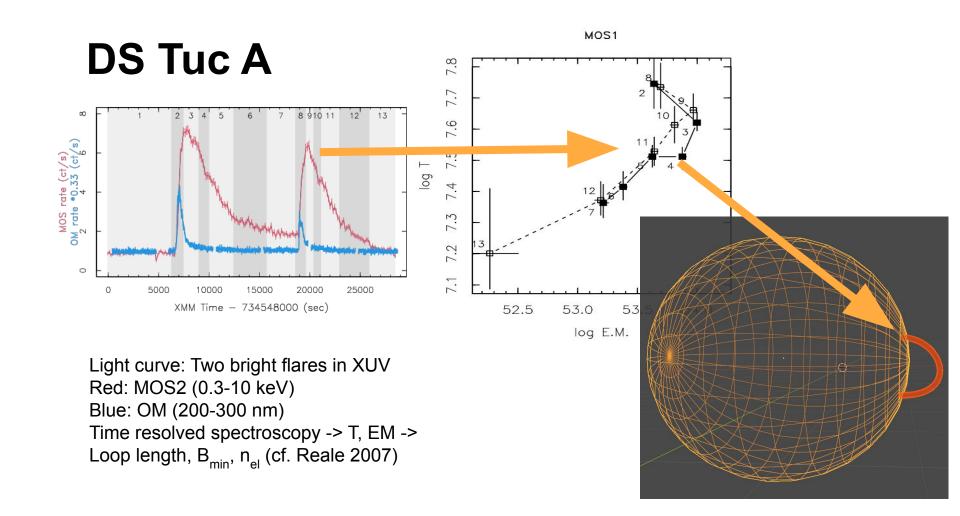
Same strategy for **HIP 67522**

(P.I. Maggio, observation planned for July 2022)

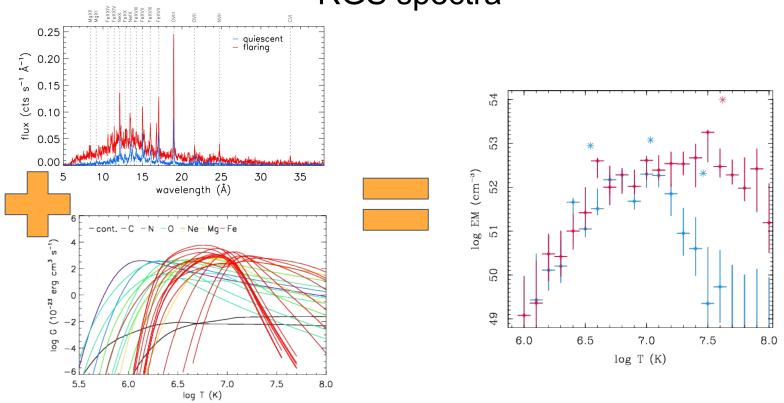



DS Tuc A

40 Myr young star


Mp <14.4 M_{Earth}

Estimate of evaporation rate due to XUV in Benatti et al. 2021



Light curve: Two bright flares Red: MOS2 (0.3-10 keV) Blue: OM (200-300 nm) *Pillitteri et al. 2022 (in prep.)*

DS Tuc A

RGS spectra

Future X-ray missions

Athena: large collecting area, high res non dispersive spectroscopy (XIFU).

- extend and measure the fluxes and luminosities in a larger number of systems
- detailed study of coronal lines, abundances and (any) motions due to CMEs
- inputs for the characterization of planetary atmospheres and SPI

SEEJ: a NASA Small Sat proposal for observing stellar coronae in soft X-rays (P.I. S. Wolk)

- □ transits of planets in X-rays (gas scale height and opacity profile)
- time variability of coronae for inferring their structure
- any SPI related effect (e.g., variability at some orbital phases)