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observations show that particles are common across a variety of temperatures and planetary types;

formation and distribution of particles are inextricably connected to composition and thermal
structure of an atmosphere;

in turn the particles interfere with our probes of atmospheric composition and thermal profiles;

a better understanding of particles leads to a better understanding of an atmosphere as a whole.
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Particles are common in the atmospheres of exoplanets

* transmission spectroscopy (+ reflected light, : :

e solar system
-- widespread
-- local and global

* clouds, hazes, and dust have something in
common 1061

-- particles (liquid or solid)
-- absorb and scatter light

differently than gases
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Particles are common in the atmospheres of exoplanets

e dust

particles lofted into the atmosphere

e clouds

collections of particle formed in the atmosphere 10
under thermochemical equilibrium (see dust 105}
formation in AGB stars) 10~}

* hazes

Pressure (bar)

particles formed directly from photo- and
radiation-chemical processes

volcanic ash  pollen grains sea salt

30 T 100 200 500 1000 2000 2000
Temperature (K)



- \West Terminator
—— East Terminator

— Antistellar point
— Substellar point

—— All

3
)
S
=
©
S
©
Q
=
o
=

S AT I R
o o o
b N o

>~

(1eq) ainssald

1
o
-




Particles are common in the atmospheres of exoplanets

e dust

particles lofted into the atmosphere

e clouds

collections of particle formed in the atmosphere
under thermochemical equilibrium (see dust
formation in AGB stars)

* hazes

particles formed directly from photo- and
radiation-chemical processes




A touch of exoticism

Venus shows a thick envelope and haze system that is mostly made up of sulfuric acid and sulfuric dioxide;
Earth’s atmosphere water and water ice clouds are abundant, as well as high altitude sulfuric acid hazes;

In Mars, there are water and CO2 ice clouds, which may use the abundant red dust in its atmosphere as
nucleation sites;

Jupiter and Saturn are covered in clouds of water, ammonia, and possibly ammonium hydrosulfide, with
overlying hydrocarbon photochemical hazes; visible Jupiter > Saturn, fewer hazes; Saturn in the infrared is
more structured than in visible;

Titan: substituted PAHSs;

exoplanets: transmission spectra are frequently featureless in the near—infrared; inability of stellar photons
to reach depths in the atmosphere below the cloud top;

exotic materials, such as salts, sulfides, rocks, metals, and hydrocarbon «soots»

particles often clump together to form complex mixtures



Particles impact every method of exoplanet
atmosphere characterization

dayside emission secondary eclipse

and reflection
r2ai phase curve
\_, \\ e

transmission and

Transit

nightside emission

e transmission: straightforward interpretation
 phase curve: 3 observables; secondary eclipse depth, phase curve offset, phase curve relative amplitude

when ignored, spatial inhomogeneities can lead to a biased interpretation of
transiting and secondary eclipse observations



and reflection

Particles impact every method of exoplanet
atmosphere characterization

Parmentier & Crossfield 2018
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strong H,0, CO and CH,4

Transmission

strong water bands

eq

dominated by scattering for clear,
cloudy and hazy exoplanets
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Transmission
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Phase curve shifts
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Phase curve shifts
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Phase curve shifts
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Phase curve shifts
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The need for laboratory measurements and numerical modelling

* |imited information on the micro-physical properties, i.e. particle composition, size, shape, number density of
scattering particles;

e conseguence: exoplanet atmospheric models capable of interpreting the upcoming observations are limited by
insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and
chemical tools;

* models rarely treat rigorously the scattering and absorption of light by particles of complex morphology;

* condensate clouds or photochemical hazes: ambiguity is difficult to solve from theory alone, and requires a

laboratory approach;

these critical gaps are regrettable as models can provide consistent, temporally and spatially resolved information
about atmospheric particle properties, and related effects in an entirety which, at the current stage,
is not accessible by observations

planned missions: from «taxonomy» to «understanding»

status: coaction of different (frequently distant) fields to provide a global description of phenomena naturally occurring on
extremely different size scales;

approach: bridging both classical and quantum optics calculations + laboratory simulations; testing in radiative transfer
calculations
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Ab-initio calculations

CH, photochemistry generates hydrocarbons such as C,H,, C,H,, C,Hg that polymerize into more complex hydrocarbon
species, some of which form aerosols; nitroaromatic in presence of NO,;
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Ab-initio calculations

CH, photochemistry generates hydrocarbons such as C,H,, C,H,, C,Hg that polymerize into more complex hydrocarbon
species, some of which form aerosols; nitroaromatic in presence of NO,;
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Table S2. Continue.

Theoretical m/z Measured m/z

[M-HI [M-HI Quantified as

Suggested Formula Proposed structure Absorbing as
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Ab-initio calculations

a noteworthy example: the pale orange dot
the vastly different conditions that have existed on planets’ long habitable histories have been largely ignored
an anoxic environment could have supported the formation of biologically mediated —via methane photolysis— organic hazes

habitability conditions of the Archean Earth: organic hazes would have absorbed ultraviolet light so well as to effectively shield
the Archean Earth (about 2 % billion years back) from deadly radiation before the rise of oxygen and the ozone layer, which
now provides that protection; the haze was a benefit to just-evolving surface biospheres on Earth, as it could be to similar
exoplanets (Hamey+16)

Planet Earth Through the Ages

Pale Orange Dot Snowball Earth Dinosaur Era The Last Ice Age Present Day Earth

®

3.8 to 2.5 billion years ago 630 million years ago 252 to 66 million years ago 2.6 million to 11,700 years ago 11,700 years ago to now
During the Archean era, atmospheric The planet might have been almost completely Even after the continents and oceans took By the onset of the most recent Ice Age The Holocene era has seen the expansion of
haze might have made Earth pale orange covered in ice, though perhaps with slushy on a more modern look, their shapes were  during the Pleistocene era the continents had,  human civilization across the planet, and
instead of pale blue — oceanic openings near the equator. very different in earlier epochs. for the most part, assumed their present the rise of advanced technology.
shapes and positions, but large parts of the

a haze possibly caused by micro-organisms. surface were covered in glacial ice.
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Molecular dynamics,

o ey
Free-energy bias (kcal/mol)

Gas phase

formamide

bt

[ow/[eay

46 keal/mol

Free-energy bias (kcal/mol) &

Amorphous H,0

distance from path
free energy (kcal/mol)

Tow/jeay

35 keal/mol

Free-energy bias (kcal/mol)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 _ : . Ao o+ €
progress along path




Molecular dynamics,

NH,CHO

formamide H20 + HCN
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Molecular dynamics,

H,CNCO+H,
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Laboratory simulations of haze and dust

high (condensate), room (spark+radiation), cryogenic (particles) temperatures

high: AGB stars, exotic planets (55 Cancri?);
room (< 800 K): particles in cooler (< 800 K), smaller (< 0.3 x Jupiter’s mass) exoplanets (especially with
enhanced atmospheric metallicity and/or enhanced C/O ratios; super-Earths and mini-Neptunes;
cryogenic: moons around giants (weather), super cold and thin atmospheres (Triton and Pluto).
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Laboratory simulations of haze and dust

* high (furnace)

liquid
i L+B

L+C
L+A




Laboratory simulations of haze and dust

* high (furnace), fast cooling

liquid
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SPLASCH@OAPa (prototype)

* room (sparks & plasma)

e 3kV generator
e MDHL UV lamp

* Electron-impact X-ray source
e QMS

* IR spectrometre plasma
* UV spectrometre

* gas mixer
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SPLASCH@OAPa (prototype)

* room (sparks & plasma), gas chemical evolution
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SPLASCH@OAPa (prototype)

* room (sparks & plasma), IR spectroscopy post processing residue (= particles)
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Optics of complex classic particles

e unlike haze, cloud particulates do go through cycles of evaporation and condensation
e «inpure» morphology and composition

coagulation of liquid particles results in larger spheroidal droplets
solids collisions lead to their aggregation

aggregation can result in a significant enhancement of absorption relative to that computed for idealized
spherically-shaped aerosols using the Lorenz—Mie theory

"@ frequently used (brutal) approximation
14 SEEN step 1: effective medium theory, material
@ G interfaces and shapes are smeared out in |
G ~ B ‘ a homogeneous mixture; [ 2 g™
. > :
S I\-’ T . : L~
% o i step 2: mass evaluation, and construction ) ,
N % and of the equivalent sphere; -
o

S, step 3: optical properties computed using
og Lorenz—Mie theory.

g



Optics of complex classic particles

* T-matrix technique (TMT): direct solutions of the macroscopic
Maxwell equations;

the field scattered by the whole aggregate is written as the 20
superposition of the fields scattered by the single spheres.
E.=TxE

e optimal combination of accuracy, computational speed, and
versatility;

* non-spherical particles modelled as a collection of polydisperse
spheres (sub-units);

e sub-units may be all different, and they don’t need to be

homogenous (e.g., radial density);

80
e analytic orientational averages of the optical quantities;

TMT involves building a matrix of order 2 N x L ( L + 2), where

N is the number of monomers that constitute the aggregate, and

L is the truncation index of the series expansion of electromagnetic
fields (i.e. the accuracy).







Wishlist (> statement of intent)

multiscale, coordinated theoretical and laboratory work;

creation of a database of absorption and scattering properties of particles sampling all the relevant properties,
i.e. composition, size, morphology;

theoretical toolbox: from methods based on the Bethe-Salpeter equation for small molecules, through various
flavours of the DFT for larger molecules and nano-sized clusters, to the TMT for complex macroscopic particles;

laboratory data will serve as the “golden standard” against which to validate the more systematic theoretical
results

for selected cases, laboratory measurements, where possible, will be directly used to populate the database;

radiative transfer models of exoplanetary atmospheres will be updated to make use of these newly available
data to properly account for dust, haze, and clouds;

incorporation in the parallel database (under construction) of chemical atmospheric profiles and spectral

synthesis;

testing the impact on the capability of forward models to accurately reconstruct the actual properties of exo-
atmospheres.



